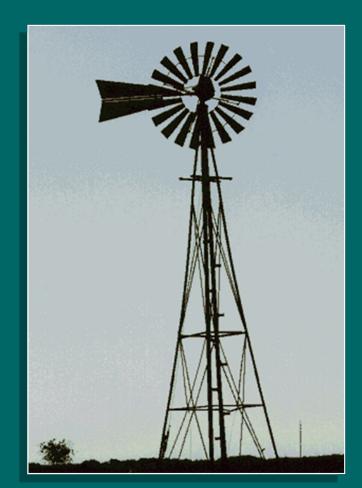

Oklahoma Water Resources Board

Water Availability Determinations

Robert Fabian – Technical Section OWRB Planning & Management Division

Hydrologic Cycle



Infiltration

Overview Oklahoma Groundwater Law

 Groundwater is considered private property that belongs to the overlying surface owner, although it is subject to reasonable regulation:

 The amount of groundwater apportioned is based upon the amount of land owned, generally 2 acre-feet of water per acre of land.

Overview Oklahoma Groundwater Law

- To Obtain a Permit to Use Groundwater in Oklahoma an Applicant Needs to Establish:
 - That they own or lease the land surface
 - The land overlies a fresh groundwater basin
 - The proposed use is beneficial
 - Waste will not occur

Overview Oklahoma Stream Water Law

Stream water is considered to be <u>publicly-owned</u> and subject to appropriation:

 "First in time, first in right": first person to apply for the water right establishes a right superior to later appropriators.

Overview Oklahoma Stream Water Law

Beneficial use is a key consideration.

Another is avoiding speculation (after permit issued). This accomplished by various means, but primarily through forfeiture due to non-use.

• Use-it-or-lose-it (7-year default):

- requires full use of the annually authorized amount within 7 years of permit issuance and at least once in any continuous 7-year period thereafter;
- Schedule of Use (exception for large projects) allows phased-in use over a specified period of time (lose if fail to keep schedule).

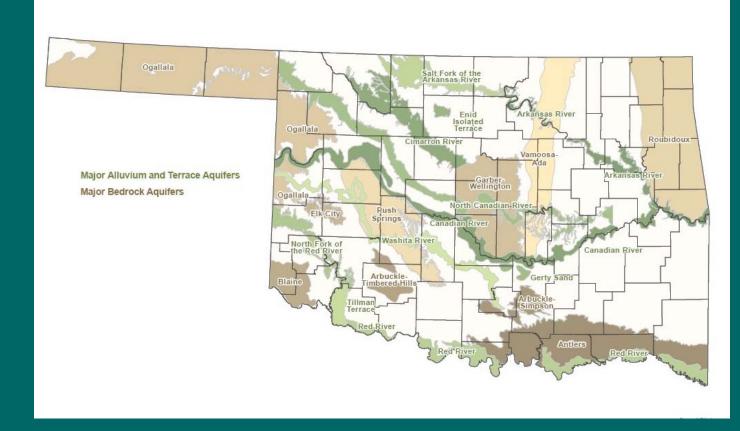
Oklahoma's Water Resources

10,662 groundwater permits:
 allocate 3.49 million ac-ft/year

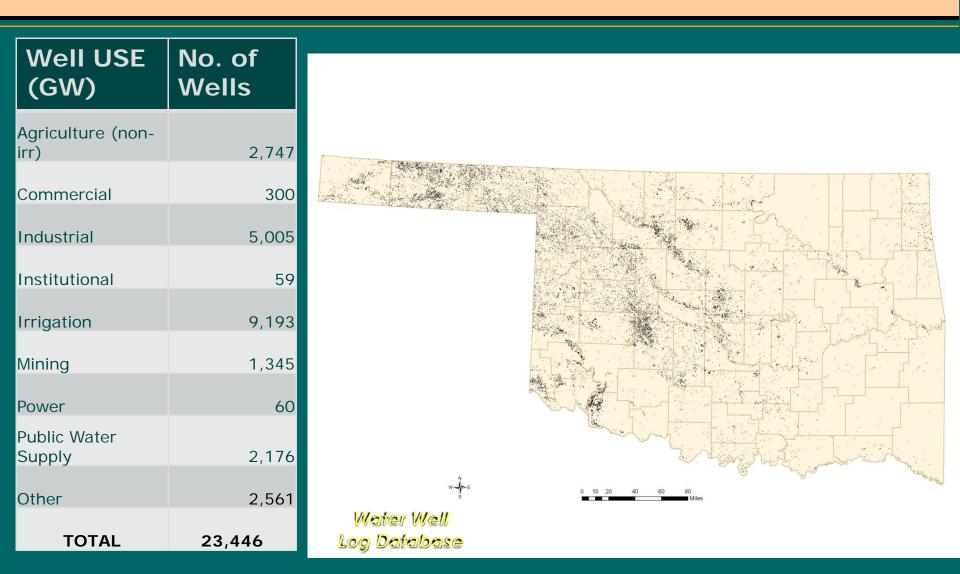
2,360 stream water use permits:
 appropriate 2.73 million ac-ft/year

Oklahoma's Water Resources

Irrigation is the #1 use of water in Oklahoma:


- Irrigation accounts for 49 percent of <u>total</u> <u>withdrawals</u>:
 - water supply = 32 percent
 - stock watering = 8 percent

 Irrigation accounts for 80 percent of <u>groundwater</u> <u>withdrawals</u>.



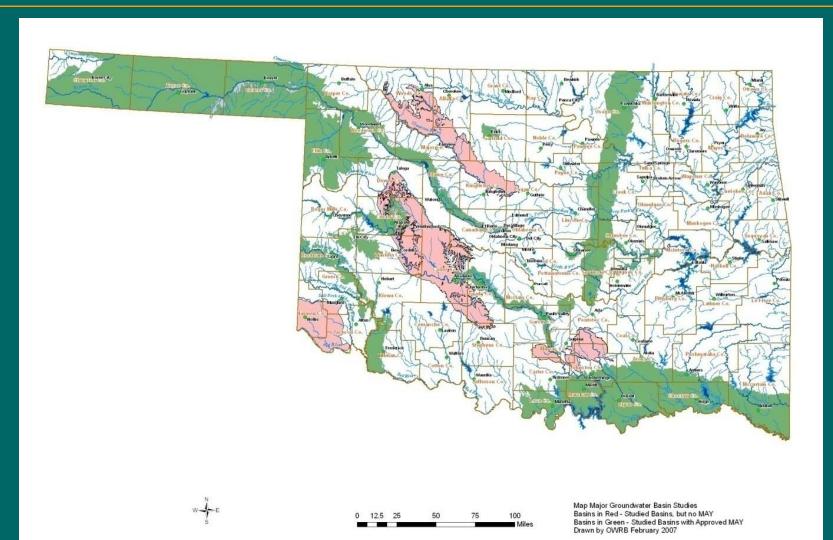
Oklahoma's Water Resources

23 major groundwater aquifers store an estimated 320 million acre-feet of water

Groundwater Wells

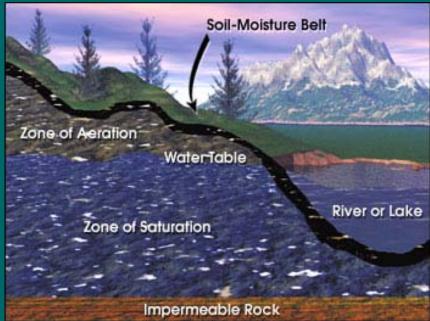
Groundwater Wells

an the second second	
N	The second s
W - E S	0 10 20 40 60 80 Miles
Water Well	
Log Database	

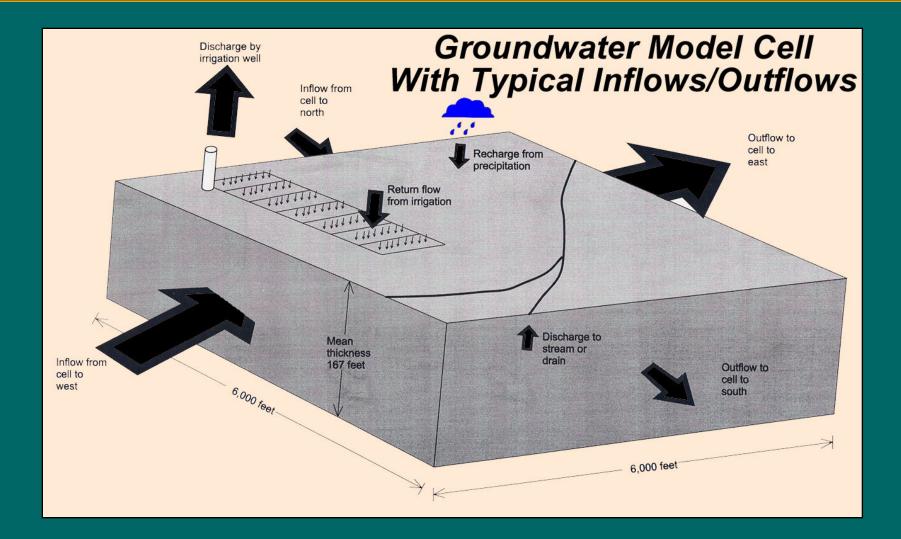

Well USE (GW)	No. of Wells
Agriculture (non- irr)	2,747
Commercial	300
Industrial	5,005
Institutional	59
Irrigation	9,193
Mining	1,345
Power	60
Public Water Supply	2,176
Other	2,561
Domestic	53,100
TOTAL	76,546

Overview Oklahoma Groundwater Law

The amount of groundwater apportioned is based upon the amount of land owned. For unstudied aquifer that is generally two acre-feet of water per acre of land:


Once a hydrologic survey is completed for a groundwater basin the maximum annual yield is determined. The amount of the equal proportionate share is typically the same or less than the non-studied basins.

Groundwater Studies



Groundwater Studies Major Basins

- Total Land Area Overlying the Basin
- Amount of Water in Storage
- Rate of Recharge
- Transmissivity of the Basin
- Possibility of Pollution of the Basin from Natural Sources
- Determination of Maximum Annual Yield

Groundwater Flow Models

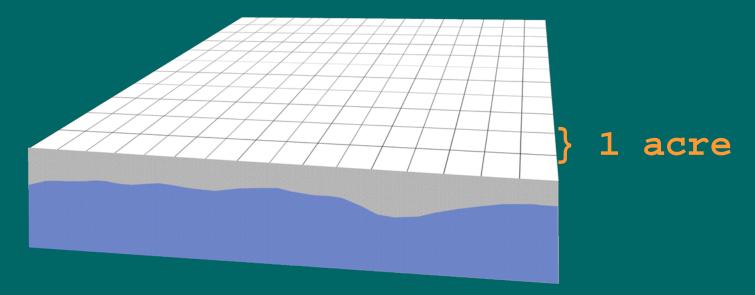
What is a Groundwater Flow Model?

Attempts to represent the hydrologic system by means of a mathematical simulation: • Simulates groundwater flow in the aquifer. • Accounts for the most important features of the hydrologic system: groundwater recharge/withdrawals aquifer physical & hydrologic characteristics groundwater and stream water interactions Outputs include calculated groundwater levels for the aquifer and flow rates in streams. The goal is to obtain an understanding of the cause and effect relations of a particular hydrologic system.

Why Do We Use Groundwater Models?

Models can be used to provide a basis for simulation of water-management options and possible future conditions.

They are an essential tool that provides critical information needed by resource managers to help formulate policy and to make sound management decisions.


Maximum Annual Yield Determinations

 Maximum annual yield
 Total amount of fresh groundwater that can be produced annually from the groundwater basin.

Equal Proportionate Share Determinations

Equal Proportionate Share

 The maximum annual yield is allocated proportionately to each acre of land overlying the basin.

Major Groundwater Basins

Groundwater Basin	Date of Final Order	EPS	MAY
Tillman Terrace	12/12/1978	1	189,760
North Fork of Red River A&T	09/08/1981	1	343,042
Elk City Sandstone	11/09/1982	0.5	26,000
Enid Isolated Terrace	11/09/1982	1	157,440
North Canadian River A&T – Phase 1	08/08/1983	1	426,000
Gerty Sand Isolated Terrace	09/12/1989	0.65	28,112
North Canadian River A&T – Phase 2	04/10/1990	1	211,840
Washita River A&T – Reach 1	11/13/1990	2	120,320
Washita River A&T – Reach 4	11/13/1990	1.5	81,840
Washita River A&T – Reach 3	11/13/1990	1	46,935
Vamoosa-Ada	05/06/1991	2	2,968,000
North Canadian River A&T – Phase 3A	02/14/1995	0.8	48,128
North Canadian River A&T – Phase 3B	02/14/1995	1.3	138,944
Antlers Sandstone	02/14/1995	2.1	5,913,600
Ogallala –Northwest Region	03/12/2002	1.4	1,198,512
Ogallala – Panhandle Region	03/12/2002	2	2,285,212

A New Approach

A New Approach

Approve a <u>maximum annual yield</u> that will not reduce the natural flow of water from springs or streams emanating from the basin (SB288).

Emphasis changed to managing groundwater withdrawals to protect stream flows for Sole Source Aquifers.

Groundwater Studies Minor Basins

 Present and Reasonably Foreseeable Future Use In The Basin

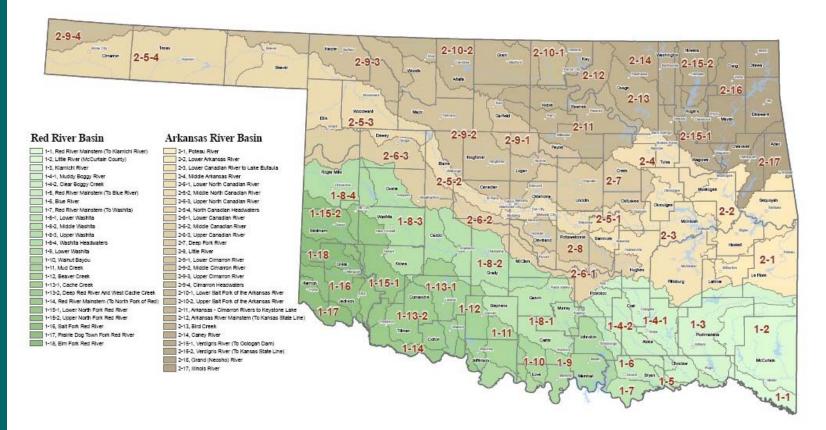
Total Recharge and Total Discharge

Geographical Region

Other Relevant Factors (i.e., area of basin, transmissivity, storage)

Determination of Maximum Annual Yield

Groundwater Studies Minor Basins


- Present and Reasonably Foreseeable Future Use In The Basin
- Total Recharge and Total Discharge
- Geographical Region
- Other Relevant Factors (i.e., area of basin, transmissivity, storage)


Determination of Maximum Annual Yield

Minor Groundwater Basins

Groundwater Basin	Date of Final Order	EPS	MAY
Beaver Creek A&T	06/13/2000	1	18,662
Hennessey-Garber	06/13/2000	1.6	550,400
Post Oak	06/13/2000	2	42,560
Cache Creek A&T	07/11/2000	1	92,435
Haworth Isolated Terrace – Region 1	01/09/2001	1	8,979
Haworth Isolated Terrace – Region 2	01/09/2001	1	6,885
Little River A&T	02/13/2001	1	87,680

Stream Systems in Oklahoma

Oklahoma's Lakes

34 major reservoirs store 13 million acre-feet of water

Lake Texoma: Oklahoma's largest lake in storage (2.6 million acre-feet)

Lake Eufaula:

Oklahoma's largest lake in

surface area (105,000 acres)

Overview Oklahoma Stream Water Law

Five Points of Stream Water Law:

- <u>unappropriated water is available in amount</u> <u>applied for;</u>
- there is a present or future need for the water:
- the use is beneficial;
- <u>use will not interfere with domestic or existing</u> <u>uses</u>; <u>and</u>,
- <u>use will not interfere with uses within stream</u> <u>system of origin</u>.

Hydrologic Investigations

Is there unappropriated water available in the amount applied for by the applicant?

Is there available water within the stream system?

- Available water within the stream system in question has historically been determined by conducting hydrologic investigations on the stream systems.
- Recently have begun utilizing stream water allocation modeling.

Hydrologic Investigations

STREAM SYSTEM 1-6: BLUE RIVER BASIN

General Information

Stream system area - 678 mi² Hydrologic Unit Code -1114 0102 010 113 mi² 1114 0102 020 205 mi² 1114 0102 030 360 mi² Stream system area - 678 mi² Majot tributaries ... Sandy Creek, Caddo Creek, Bokchito, Creek, Mean annual runoff based on adjusted gage flow - 9.65 mches

Mean annual net lake evaporation for stream system - 10 inches Estimated reservoir refill factor (α) for stream system - 1.8

Estimated Available Water

USGS gage 07332500 Blue River near Blue, OK Gauge Location: Between Sec 27 and Sec.36, -T6S-R10EIM, <u>Bryan</u>, <u>County</u> - 476 mi² drainage area. Water years 1936 through 1996:

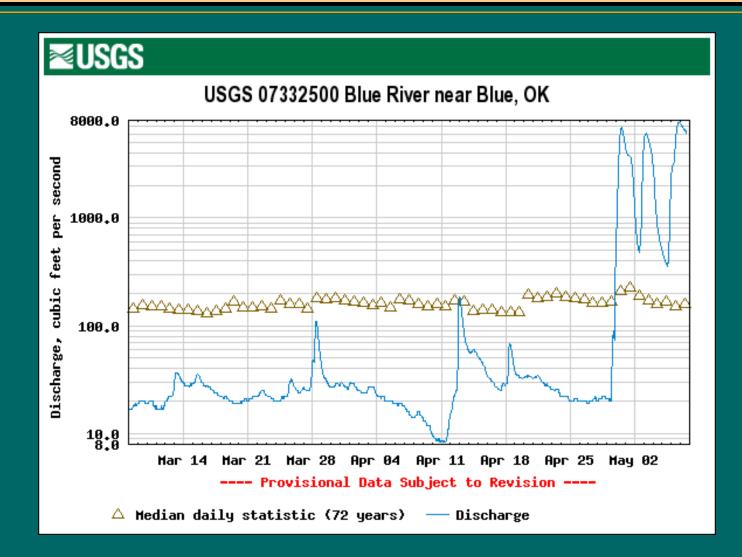
Mean annual gage flow - 325 cfs; 235,352 acre-feet/year Mean annual gage flow adjusted for upstream water use - 245,112 acre-feet/year Mean annual runoff for 202 mi² below USGS gage - 104,018 acre-feet/year

Total Estimated Available Water - 349,130 acre-feet/year

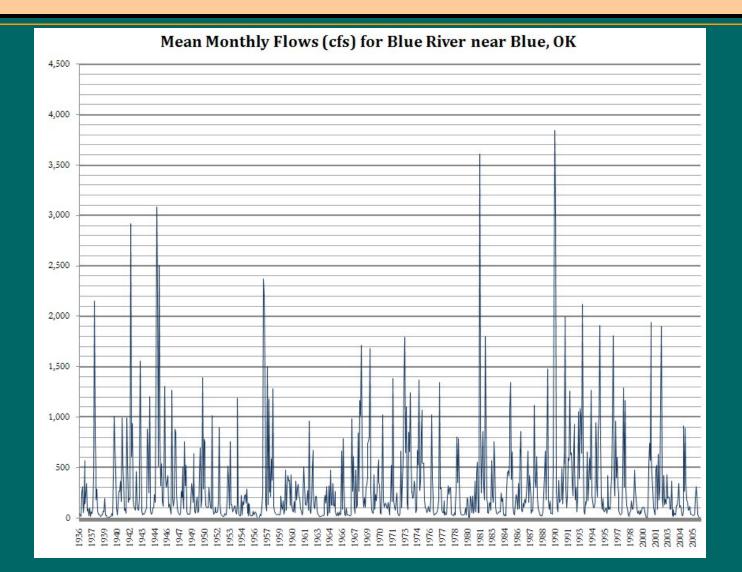
Table of monthly mean flows (acre-feet) from USGS gage 07332500 (WY 1936-1996)

Month	Acre-feet	Month	Acre-feet	Month	Acre-feet	Month	Acre-feet
January	13,592	April	34,938	July	9,410	October	14,884
February	20,665	May	40,839	August	4,945	November	15,237
March	28,230	June	26,605	September	9,940	December	15, <mark>8</mark> 07

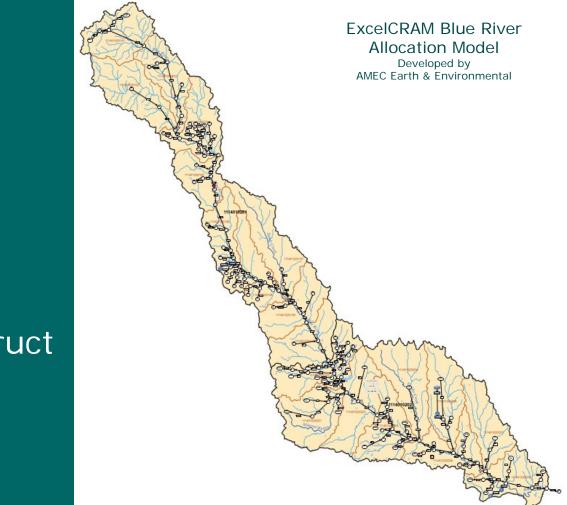
Total Estimated Available Water - 349,130 acre-feet/year Total Estimated Storage/Dependable Yields - 0 acre-feet/year Adjusted Total Estimated Available Water - 349,130 acre-feet/year


Watershed Code	Area	Adjusted Total Estimated Available Water
1114 0102 010	113 mi ²	58,188.33 acre-feet/year
1114 0102 020	205 mi ²	105,562.9 acre-feet/year
1114 0102 030	360 mi ²	185,378.8 acre-feet/year

Total Available S	tream Wate	r	Low Flow Season	High Flow Season	Total
	HUC10 Watershed	HUC12 Sub-watershed	(June-Oct.)	(NovMay)	(Annual)
1-6 Blue River			91,200	252,300	343,500
Upper Blue River Watershed	1114010201		47,800	122,500	170,200
Limestone Creek - Blue River		111401020101	2,700	6,100	8,800
West Little Blue Creek		111401020102	3,100	7,200	10,300
111403030103 - Blue River	1	111401020103	2,300	5,300	7,500
Little Blue Creek - Blue River		111401020104	8,600	19,500	28,000
Pecan Creek - Blue River		111401020105	6,100	14,000	20,100
Desperado Spring Falls - Blue River		111401020106	8,300	18,100	26,400
Sandy Creek		111401020107	4,900	15,900	20,800
Little Sandy Creek - Blue River		111401020108	3,900	10,600	14,500
Reeder Creek - Blue River		111401020109	3,900	12,700	16,600
Bois d' Arc Creek - Blue River	-	111401020110	4,100	13,000	17,100
Lower Blue River Watershed	1114010202		43,400	129,800	173,300
Mineral Bayou		111401020201	5,600	15,700	21,400
Little Blue River - Blue River		111401020202	6,200	15,800	22,000
Kanola Creek - Blue River		111401020203	4,700	15,300	20,000
Caddo Creek		111401020204	5,000	16,300	21,300
J&N Creek - Blue River	1	111401020205	4,800	14,100	18,900
Bokehito Creek		111401020206	4,400	14,300	18,700
Sulphur Creek		111401020207	3,700	12,200	15,900
Cherokee Lake - Blue River		111401020208	4,200	12,500	16,600
Lower Blue River		111401020209	4,800	13,600	18,500


2009 Hydrologic Investigation Report

1998 Hydrologic Investigation Report


Hydrologic Investigations Data Issues

Hydrologic Investigations Data Issues

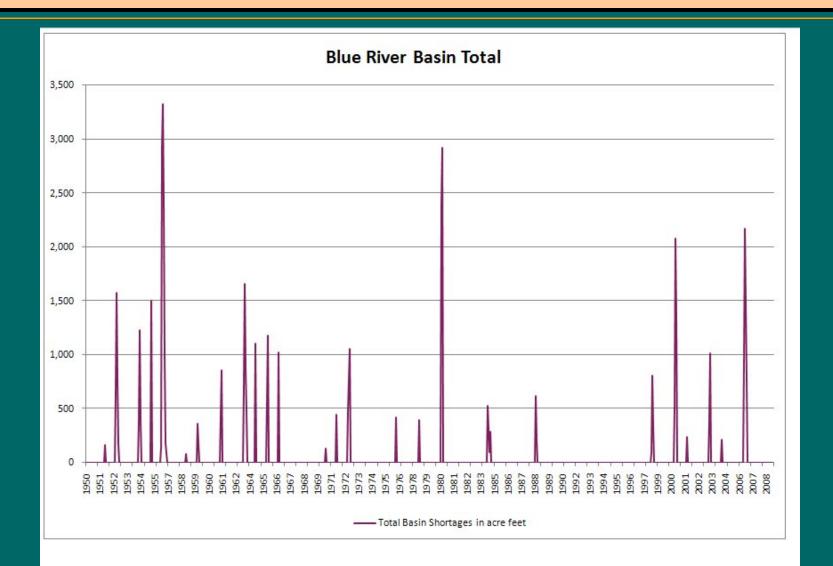
Stream Water Allocation Modeling

 Computer Construct of Blue River Stream System

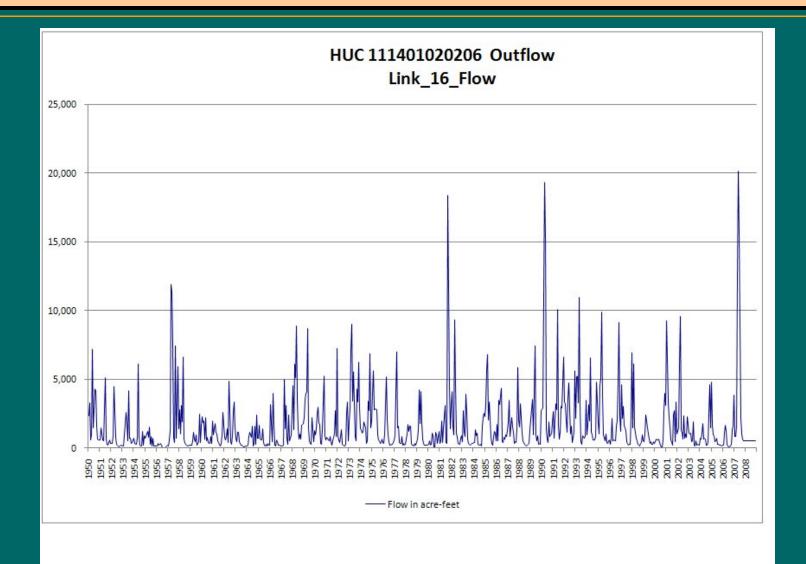
Allocation Modeling Data Needs

Hydrologic Data Stream gage data Lake evaporation data Change in lake levels Permit Information • Date water right was filed • Amount of water authorized Beneficial use for water right Reported water use of water right

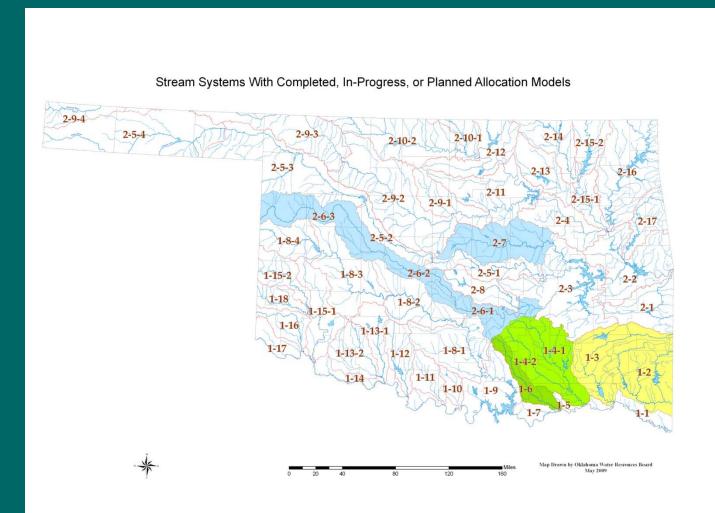
Network Schematic


Demand Patterns

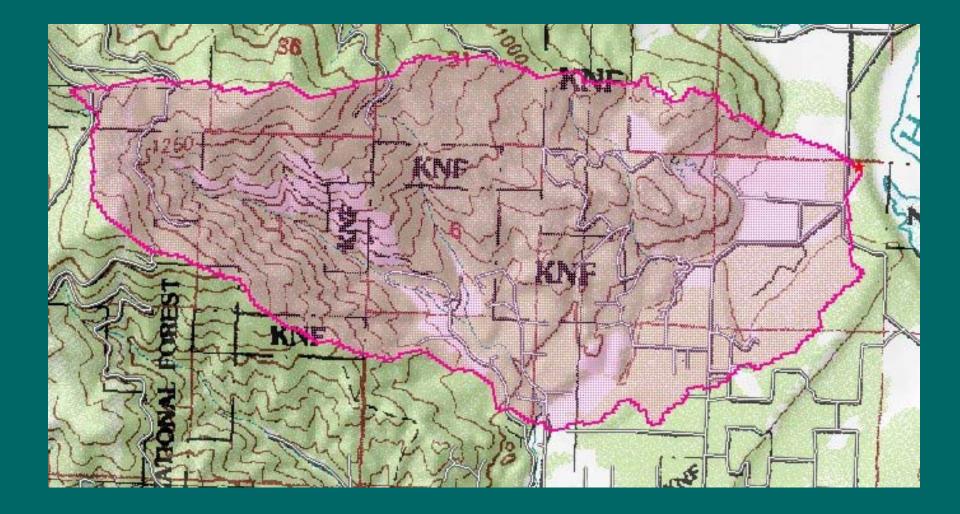
Monthly Demands															
Because of the monthly timestep,	demande														
are modeled as consumptive use,			Demand Patterns (monthly	N) CHANCE ON N				LICETIN							
the amount diverted.	1164 85		Month	AJ - CHANGE UNLI	2	3	II NULƏ Ə	5	6	7	8	9	10	11	12
INF BINCION USPENED			Irrigation Pattern	0.00%	0.00%	0.00%	0.00%	0.00%	25.00%	29.20%	29.20%	16.70%	0.00%	0.00%	0.00%
			M&IPattern	7.30%	7.30%	7.30%	9,10%	9.10%	10.90%	10.90%	10.90%	9.10%	7.30%	5.50%	5.50%
			Other Pattern	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%	8.33%
			Other Pattern	0.337.	0.007.	0.007.	0.337.	0.00/4	0.007.	0.007.	0.007.	0.337.	0.007.	0.55%	0.3374
			Consumptive use - CHAN	SE ONLY IN THE INP		ROLS SHE	FTII								
			Consumptive use Contract	inigation	70.00%	ICCO OTIL									
				Alla/	85.00%										
				Other	75.00%										
				-											
			Consumptive Use Patterns	(monthly %) - THES	E ARE CA	LCULATE	D, DO NO	T CHAN	GE!!!						
			Month	2 D 1	2	3	4	5	6	7	8	9	10	11	12
RSFABIAN:			Irrigation Pattern	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
Permit 19360076 is			M & I Pattern	6.21%	6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
consumptive. Water is			Other Pattern	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%
used for fish hatchery.															
and the second state of the															
				Monthly d	onsumptiv		cent - CH	IANGE T		R INDIVID					
	Tot_acre_ft Purpose	Entity Name	MI or IRR Pattern	1	2	3	4	5	6	7	8	9	10	11	12
18 19360076 🏅	6445 Recreation, Fish, WL	Wildlife Conservation, Dept of	OTHER	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%
14 19400050	1842 Public Supply	Durant, City of	MI	6.21%	6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
4 19660144	34 Irrigation	Potter, Thomas G	IBR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%		11.69%	0.00%	0.00%	0.00%
23 19660587	66 Irrigation	Durant Wholesale Nursery	IRR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
40 19670320	25 Agriculture	Woods, Bruce & Michele	OTHER	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%	6.25%
2 19710226	45 Irrigation	Raney, Rick & Linda	IRR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%			11.69%	0.00%	0.00%	0.00%
3 19710253	25 Irrigation	Calhoun, Clyde D	IBB	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
28 19710296	200 Irrigation	McGlocklin, Bobby	IBB	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
43 19710362	12 Industrial	Unimin Corporation	MI	6.21%	6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
17 19710554	4500 Public Supply	Durant, City of	M	6.21%	6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
45 19720166	10 Irrigation	Gray, Odessa	IBB	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%		20.44%	11.69%	0.00%	0.00%	0.00%
24 19770025	639 Public Supply	Rural Water, Sewer & SW Mgmt Dist#2	MI	6.21%	6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
37 19780104	129 Irrigation	Duncan, Joe S	IRR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
21 19780140	6000 Public Supply	Durant, City of	M	6.21%	6.21% 6.21%	6.21%	7.74%	7.74%	9.27%	9.27%	9.27%	7.74%	6.21%	4.68%	4.68%
16 19790054	300 Public Supply	Rural Water, Sewer & SW Mgmt Dist#2	MI			0.00%		0.00%			20.44%		0.00%	4.68%	
29 19800180	320 Irrigation	Murray State College	IRR	0.00%	0.00%		0.00%	0.00%	17.50%	20.44%	20.44%	11.69%			0.00%
35 19800185	250 Irrigation	Easterling, Eugene	IRR	0.00%	0.00%	0.00%	0.00%		17.50%			11.69%	0.00%	0.00%	0.00%
22 19800190	56 Irrigation	Durant Wholesale Nursery	IRR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%
41 19810082	320 Irrigation	Barnett, Walter L	IRR	0.00%	0.00%	0.00%	0.00%	0.00%	17.50%	20.44%	20.44%	11.69%	0.00%	0.00%	0.00%


Outputs

Basin:	Blue River	5	Scenario	2									
Station Name:													
xcel Model Element:		j		0	1								
Run Comment:													
i tan oonnone.													
Year Column:	0												
Output Worksheet:	Blue River B	Basin Totals											
Column Offset:	5												
Title for Graph:	Total Basin	Shortages in	n acre feet ⊏()									
					Basin She	ortages	in acre f	eet					
	100				Shortage in acre-feet					-			
				chorage in acre-reet									
YEAR	1	2	3	4	5	6	7	8	9	10	11	12	Total
1950	0	0	0	0	0	0	0	0	0	0	0	0	0
1951	0	0	0	0	0	0	0	163	0	0	0	0	163
1952	0	0	0	0	0	0	666	1,575	774	179	0	0	3,194
1953	0	0	0	0	0	0	0	0	0	0	0	0	0
1954	0	0	0	0	0	0	388	1,229	391	0	0	0	2,008
1955	0	0	0	0	0	0	0	1,498	0	0	0	0	1,498
1956	0	0	0	0	0	137	2,939	3,323	2,368	961	181	0	9,909
1957	0	0	0	0	0	0	0	0	0	0	0	0	0
1958	0	0	0	0	0	0	0	83	0	0	0	0	83
1959	0	0	0	0	0	0	0	366	0	0	0	0	366
1960	0	0	0	0	0	0	0	0	0	0	0	0	0
1961	0	0	0	0	0	0	0	857	0	0	0	0	857
1962	0	0	0	0	0	0	0	0	0	0	0	0	0
1963	0	0	0	0	0	0	719	1,660	877	481	0	0	3,737
1964	0	0	0	0	0	0	1,101	0	0	0	0	0	1,101
1965	0	0	0	0	0	0	564	1,178	0	0	0	0	1,742
1966		0	0	0	0	0	1,025	0	0	0	0	0	1,025
1967	0	0	0	0	0	0	0	0	0	0	0	0	0
1968	0	0	0	0	0	0	0	0	0	0	0	0	0
1969	0	0	0	0	0	0	0	0	0	0	0	0	0
1970	0	0	0	0	0	0	0	132	0	0	0	0	132
1971	0	0	0	0	0	0	445	0	0	0	0	0	445
1972	0	0	0	0	0	0	478	1,057	0	0	0	0	1,535
1973	0	0	0	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	424	0	0	0	0	424
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	395	0	0	0	0	395


Graphs

Graphs


Stream Systems Modeled

Application Water Availability

- Is there water available at the proposed diversion point in the amount needed?
 - Calculations based on average annual runoff over the watershed above proposed diversion point (Application Watershed Model).
 - All appropriations, estimated domestic uses, and reservoir dependable yields are subtracted out.

Application Watershed Delineation

Application Available Water Calculation

Delineated Watershed of Application

- Area of watershed
- Estimated rate of surface flow within watershed
- Estimated domestic use within water
- Existing water rights within watershed
- Existing NRCS lake storage within watershed

Estimated Available Water

 (Area x Run-off) – Domestic Use – Existing Water Rights – NRCS Lake Storage – Unappropriated Lake Yields = Available Water

Application Available Water Evaluation

On an annual basis is there water available?

If not then how much water is available?

Does the proposed water right interfere with existing downstream domestic use?

 If there is interference then is there an amount of water use the applicant can use that will not interfere?

Application Available Water Evaluation

Finally is the question of Will the proposed applications use interference with existing water rights?

 If there is the possibility of interference is there some quantity of water available that won't cause interference.

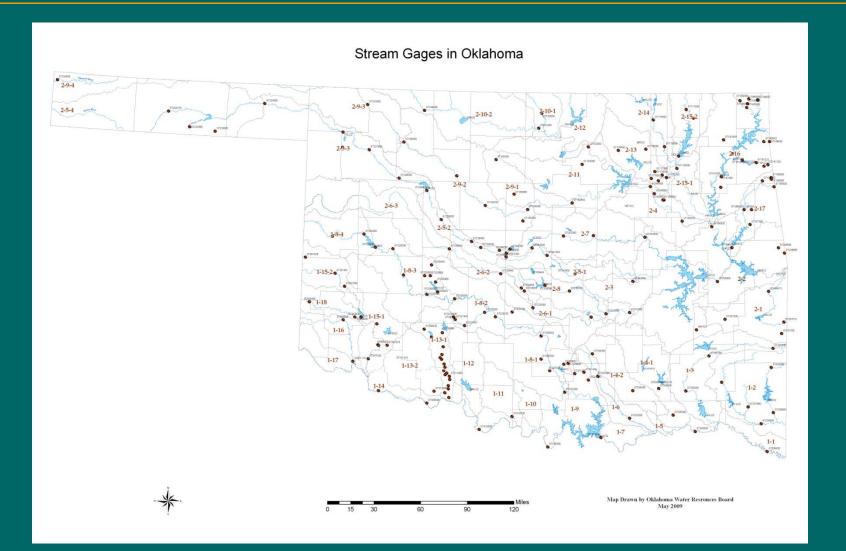
Water Availability from a Lake or Pond

From a lake which has had a dependable yield analysis conducted.
The dependable yield is the amount of water available.

These are primarily the Federal lakes

Water Availability from a Lake or Pond

For a lake or pond without a dependable yield analysis


- Use the following formula to estimate the amount of water the pond's watershed can provide to refill the pond.
 - $W_{aval} = (Storage (1 (R_{age}/R_{life}))) * \alpha$
 - Where: W_{aval} is the available water; St is the normal storage of the pond or lake; R_{age} is the age of the structure; R_{life} is the life of the project, typically either 50 years or 100 years; and α is the refill factor.
 - $\alpha = (F_{80} \times A) / (Evap \times Surf)$
 - Where: α is the refill factor; F_{80} is the 80% exceedance run-off into the pond; A is the area of the pond's watershed; Evap is the net lake evaporation of the pond; and Surf is the surface area of the pond.

Oklahoma Water Resources Board:

Oklahoma's Water Agency

Hydrologic Investigations Data Issues

