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Abstract. We analyzed heterotrophic, pelagic bacterial production and
specific growth rate data from 57 studies conducted in fresh, marine and
estuarine/coastal waters. Strong positive relationships were identified be-
tween 1) bacterial production and bacterial abundance and 2) bacterial
production and algal biomass. The relationship between bacterial produc-
tion and bacterial abundance was improved by also considering water
temperature. The analysis of covariance model revealed consistent differ-
ences between fresh, marine and estuarine/coastal waters, with production
consistently high in estuarine/coastal environments. The log-linear regres-
sion coefficient of abundance was not significantly different from 1.00, and
this linear relationship permitted the use of specific growth rate (SGR in
day~!) as a dependent variable. A strong relationship was identified between
specific growth rate and temperature. This relationship differed slightly
across the three habitats. A substantial portion of the residual variation
from this relationship was accounted for by algal biomass, including the
difference between marine and estuarine/coastal habitats. A small but sig-
nificant difference between the fresh- and saltwater habitats remained. No
significant difference between the chlorophyll effect in different habitats
was identified. The model of SGR against temperature and chlorophyll was
much weaker for freshwater than for marine environments. For a small
subset of the data set, mean cell volume accounted for some of the residual
variation in SGR. Pronounced seasonality, fluctuations in nutrient quality,
and variation of the grazing environment may contribute to the unexplained
variation in specific growth.

Introduction

Over the past 20 years we have become much more aware o_f tl}e significant
role that heterotrophic bacteria play in aquatic systems. This 1s, to a large
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degree, the result of improvements in methods usc;d for azszzﬁegwgictztzr;z
bioma;s and production. It is now clear that bactepa ézawin crs of orpan
role in aquatic ecosystems. They are not only the major ecg tpare ircroamagl
matter in the water column and sedxment‘s [30, 50, 96_}, ub throush £
recognized as important producers of partxculata: organic cgr 2(;1;, rougn U
consumption and assimilation of dissolved organic carbon [9, : ax.;d e
convert large amounts of organic matter,'bot'h autocl_lthonou o ates (12 5]
nous, intto bacterial biomass and can sustafm.hlg_h spcmﬁc grow; ra ! ca,r ool
Thus they may provide a route for thegz:)s,]mmﬂatlon of dissolved orga
into the classical food chain [46, 51, . '
mtI(t)is evident that a thorough understanding of the flow of nutnents and car?;g
in the aquatic ecosystem will require knowledge of the parameters thgf;t regct:Mh
microbial production and specific growth. Both production apd spercl:l fC g}l‘1 oy
are likely affected by a panoply of environmental factors in botk r?é oo
saltwater ecosystems. These factors have long been a matter of conside atit ’
speculation. Laboratory and in situ research suggests that substrate quan ;
and quality, as well as temperature, are important regulators qf production anl
specific growth [48, 64, 72, 100]. Recent research has descand broad-SC?le
empirical relationships between bacterial abundance and algal biomass [2, )
20], between bacterial production and bacterial abundance, as well as petwqen
bacterial production and net primary production [20]. Empirical relatlonshz‘ps
such as these reveal those parameters which are important regulators of bacterial
growth and production, and are extremely useful in directing future research
efforts. .
Here we describe several empirical models that relate bacterial pr.oductl;on
and specific growth rate in fresh and salt waters to several variables, including

» water temperature, and algal biomass (expressed as con-
centration of chlorophyll ).

Methods

Data Collection

classified on the basis o
233%o, and estuarine/coas
were conducted in eutrophic
otrophic lakes (ch]orophyl
in rivers, A wide range o

f salinity, with marine environments
tal environments as those <33%, [88].
lakes (chlorophyli g =15 ug/liter [96]),
| a between 2 and 15 pg/liter), and the
f seasonal conditions and depths were
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reported, the data were in some cases obtained from the principal au%hor. 'Bacteria‘l :{Lbund::;: :;
the data set was determined by epifiuorescence direct counts, employing either acndm(.a of e
diamidinophenyl indole (DAPI). Bacterial production was measun'zd by four meﬂlods. ;11) s
[methyl-*H] thymidine (n = 48), dark "*C (HCO," or labelled organic C) uptake (n = 4), ief“—zl) Foz
of dividing cells (n = 4), and increase in cell number upon dilution and mcubz.mon n= Cim 1
studies where only [methyl-*H] thymidine uptake rates were reported (n = 12), esnmgtes of_ ba , a
production were obtained using a conversion factor that is a mean of those reported in the ht»'.erla;e ure,
ie, 2.1 x 10 cells mole™! thymidine. Values of this magnitude have been shov«fn 1o 7am
approximate baseline conversion factor over a wide range of *H-thymidine concentrations [i, 66].
To convert increase in cell number to production, the conversion factor 2.9 x lp*“ gC cc?il ] [65]
was applied. While higher than the conversion factor used by some authors, it lies well mthfn the
published range of 1.0 x 1074 10 5.8 x 10-'% g C cell! [16, 17, 25, 31, §5, 63, .73]. anzry
productivity data for three studies were converted to chlorophyll ¢ concentrations using the model
of Smith [85]. Phytoplankton biomass values for one study were converted to Ch]Ol:O?hyH a con-
centrations according to Banse [7]. Values expressed on the basis of area were divided by the
sampling depth to obtain volumetric equivalents. Studies for which in situ temperature could not
be provided were excluded from the analysis.

Data Analysis

The data were analyzed by ordinary least squares regression and analysis of covariance (ANCOVA)
using SYSTAT [99] and GLIM 3.12 {1]. The data were fit to the model Y = 8, + 8,-(X) + f'fOF
simple linear regressions and Y = g8, + B (X)) + B(X) + ... + B (X)) + ¢ for multiple
regressions. The error term ¢ was assumed to be independent and normally distributed with mean
zero and variance 0%, Where necessary, the data were log transformed to equalize the variance over
the range of observations and meet the normality assumptions of least squares regression analysis
[74]. To compensate for inherent bias in log transformed equations, correction factors were ca]
culated (CF = antilog 1.1513 x RMS, where RMS is the residual mean square of the regression)
[66]. To account for the possibility of underestimating the regression coefficient (slope) when there
was error in the independent variable, a model II or geometric mean slope was calculated as
recommended by Ricker [74]. Cross-validation and model selection employed the prediction sum
of squares (PRESS) [1, 6]. The method involves omitling each observation in turn from the data
set, fitting the model to the remaining observations, predicting the value of the omitted observation,
and comparing the prediction with the observed value. The sum of the squared differences between
the omitted observations and their predicted values provides the PRESS. When this is minimized,
one selects the model with the greatest predictive value [1]. For multiple regressions, standardized
partial regression coefficients (beta coefficients) were calculated to provide an indication of the
relative impact of each independent variable on the dependent variable [101]. Normality of the
residual values from each model was assessed using the Komogorov-Smirnov test {101}, and visual
inspection of a normal probability plot [99].

The following abbreviations are used in the text: PROD = bacterial secondary production (ug
C liter~* day-'), ABUND = bacterial abundance (10° cells liter-
(°C), SGR = specific growth rate (day-'), CHLA
doubling time (days), SAL = salinity (%), and V
are 99%. Log values are base 10,

"), TEMP = water temperature
= chlorophyll a concentration (ug liter™"), G =
OL = cell volume {(um?). Al} confidence intervals

Results

» and maximum values of bacterial production, temperature,

. at s chlorophyll ¢ concentration, doubling
time, salinity, and cell volume are summarized in Table 2. Some extreme values

' —
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are worth noting. The highest freshwater chiorophyll and bacterial production
values are from eutrophic Lake Nesjgvatn in central Norway [91]. The highest
marine chlorophyll concentrations are from an upwelling zone off the coast of
Chile [59]. Extremely low (almost unbelievable) marine abundance and pro-
ductivity values are from marine snow in the subtropical Atlantic [5]. Pro-
duction values are consistently high in the estuarine/coastal habitat. Extremely
high estuarine/coastal abundance, production, and chlorophyll values are from
eatrophic Biétri Bay (Elbrié Lagoon, Ivory Coast) [89]. Specific growth rates
in the data set ranged from a low of 0.0003 day™! to a high of 30.8 day™!, with
amean of 0.9 day~!. Extremely low values, equivalent to doubling times of
well over 1 year, occurred in Drake Passage, Antarctica [41]. Extremely high
values of 30.8 day~!, equivalent to a doubling time of 47 minutes, occurred in
eutrophic Biétri Bay, at a chlorophyll concentration of approximately 78 ug
liter! and a temperature of 30°C [89]. The relationships between the major
variables of interest are summarized in Fig. 1. The scatter plot matrix dem-
onstrates linear relationships between specific growth rate or production and
several variables including temperature, bacterial abundance, and algal biomass
(concentration of chlorophyll a). Pearson correlation coefficients are provided
for each scatterplot.

Bacterial Production

For the entire data set, a significant relationship was identified between bacterial
production and bacterial abundance. The overall relationships for model (1) is:

log PROD = 0.88 + 1.19 log ABUND r2=063,n=723 (1)

Comparison of the studentized residuals from this model to a ¢ distribution
with the appropriate Bonferonni correction [60] revealed several extreme out-
liers at & = 0.05. Two values were from Antarctic data [32], and the remainder
(21 observations) were riverine data [29, 42]. Leverage values (/) [94] asso-
ciated with these observations revealed undue influence on the regression es-
timates. These observations were removed from subsequent analyses. The re-
vised model (model (2)) with slightly changed coefficients and r? is:

log PROD = 0.89 + 1.22 log ABUND r?=0.68, n =700 2)

The slope estimate is not significantly different from the one published by
Cole et al. [20]. In addition, a consistent relationship was identified between
bacterial production and chlorophyll a concentration:

log PROD = 0.86 + 0.71 log CHLA r2=10.36,n =412 3)

The slope estimate (model (3)) is also not significantly different from the one
published by Cole et al. [20]. It should be noted that the intercepts of the models
published by Cole et al. [20] fall well below our lower 99% confidence limit.
The above relationships differed slightly among the different habitats examined.
Regression equations for each habitat are summarized in Table 3.

The analysis of the relationship between bacterial production and abundance
was significantly improved by the inclusion of in situ temperature as an ad-
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Table 2. Summary statistics. Mean, minimum, and maximum values of bacterial producz;:ﬁ{gg
Cliter-! day™'), bacterial abundance (10° cells liter!), temperature .(‘G‘C), chlorophyll ;1 coilcen (pmlj
(ug liter'), specific growth rate (day™"), doubling time (day?.), salinity (%o) and cel ~v0 ltlme )
for fresh, marine, and estuarine/coastal waters. For sample size (n) see Table 3. NA = not ava

or applicable

Fresh Marine
Mean Min Max Mean

PROD 43.33 0.45 302.40 17.96
ABUND 3.76 0.32 13.90 1.39
TEMP 13.94 2.10 32.00 14.35
CHLA 16.60 0.40 103.70 4.39
SGR 0.56 0.017 8.69 0.44
G 7.41 0.12 59.65 57.64
SAL NA NA NA 34.66
VOL 0.119 0.083 0.185 0.468

ditional independent variable. The following model (model (4)) was identified
for the entire data set:

log PROD = 0.11 + 1.07 log ABUND + 0.05 TEMP
r2=0.79, n = 700 4

Analysis of covariance revealed a significant habitat effect and temperature-
habitat interaction. The differences between the relationships in each habitat
are slight, but significantly different at o = 0.05. Regression models for.each
habitat are summarized in the top half of Table 4. The analysis of covariance
model (model (5)) (r> = 0.81, n = 700, F significance <0.00001), identified by
minimizing the prediction sum of squares, is as follows (values associated with
regression coefficients are 99% confidence intervals):

Fresh: 0.43
log PROD = Ig“‘”“?: ~008 1 100 + 0.08 log ABUND
Stuanne

& Coastal: 0.165

Fresh: 0.031 + 0.015
Marine: 0.052 + 0.005
Estuarine ' TEMP S

& Coastal: 0.046 + 0.008

T}}e regression coefficients indicate that the temperature-habitat interaction is
primarily due to the difference in the effect of temperature between fresh and
saltwater habitats (i.e., little difference exists between marine and estuarine/
Coastal habitats). The standardized regression coefficients indicate that in fresh
and estuarine/coastal habitats the impact of temperature on production is great-
er than th'fu of abundance, but that the reverse is true for the marine data.
Approx&mately 70% of the collected saltwater data included salinity values.

variation in the relationship between

Salinity accounts for some of the residual

’%‘*
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Table 2. Continued

Marine Estuarine & Coastal

Min Max Mean Min Max
2.0E—-06 336.19 355.56 0.03 23767
3.0E—06 11.40 4.93 0.12 3170
~2.00 33.00 21.40 ~ 1L 35.00

0.04 62.00 12.34 0.08 78.20

0.0003 10.17 1.75 0.007 30.81

0.10 2,900 15.41 0.032 1,353
313.00 3928 22.69 4.50 32.80

0.033 1.00 NA NA NA

LABUND TEMP LCHLA

LPROD

LSGR

Fig. 1. Scatterplot matrix of the major variables of interest: LPROD, log bacterial production
(ug C liter— day™'); LSGR, log specific growth rate (day~!); LABUND, log bacterial abundance
(10° cells liter-1): lemperature (°C) and LCHLA, log chlorophyll 4 concentration. Values associated
with Scatlerplots are Pearson correlation coefficients (r); values greater than 0.164 are significant
at P = 0,001, Frequency distributions are also provided for each variable.
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production and temperature. It was found to have a small, bt(zit 151g6n)1'ﬁcant,
negative influence on production (F significance <0.00001) (model (6)):

log PROD = 0.45 + 0.095TEMP — 0.039SAL n =298, r2=046 (6)

(+0.64) (£0.02) (+0.02)

Values associated with regression coefficients are '99.% confidence u}ﬁrv;ii» tﬁ(‘;
model including abundance, temperature, and sahpzty was not possible l;; o
the collinear nature of abundance and salinity. Colhneanty.mﬂat‘cs the_stan o

error of the regression coefficients and can obscure a relationship which exists
in the population.

" ”}‘he lrjml))del of production as a function of abundance and temperature '(H';Od?;
(5)) demonstrates that the effect of bacterial abundance on ;?rOdl}Cthit ‘};i :
equivalent in each of the three environments. Since the coeﬁiqent is not sig

nificantly different from 1.00, the relationship bet'ween.bactenal productxm
and abundance is linear once the effect of temperature is acco_unted 'for: $-
suming a steady state between population growth and. mortah'ty, _thls hnegr
relationship permits the computation of a dependent variable which is the rgltm
of production to biomass, the specific growth rate, The use of fspeaﬁc growth
rate as a dependent variable eliminates the problem of coihnpanty l?etwef:n the
independent variables in models 4, 5, and 6. Thus it permits the isolation of
the effect of temperature on bacterial growth.

Growth Rate

A strong relationship was identified between specific growth rate and temper-
ature in both fresh and saltwater habitats. The analysis of covariance model
revealed a slight but significant difference between the three habitats. The model
(model (7)) (2 =0.44, n = 700, F significance <0.0000 1)1is summarized below:

Fresh: —1.04 Fresh: 0.031 + 0.015
log SGR = | Marine: =1.54 | | | Marine: 0.052 + 0.005 “TEMP (7
Estuarine Estuarine

& Coastal: —1.30 & Coastal: 0.046 + 0.008

A substantial portion of the residual variation from this relationship can be
accounted for by algal biomass expressed as concentration of chlorophyll a.
The analysis of covariance model (r>=0.57,n =412, F significance <0.00001),
is summarized below in model (8):

log SGR = —~1.30

Freshwater: 0.037 + 0.016 log CHLA
(£0.005) (£0.005)
- TEMP (8)
Saltwater: 0.052 + 0.016 log CHLA
(£0.008) (£0.005)



predicting Bacterial Production and Growth Rate 109

2 T T ] T T I I T

-3

SALTWATER

FRESHWATER

LOG SPECIFIC GROWTH RATE (DAY )

..3 fat | ® | i i H 1 I

5 0 5 10 165 20 26 30 35 40

TEMPERATURE (°Q)

Fig. 2. The relationship between bacterial specific growth rate (day™') and temperature (°C) in
fresh- and saltwater habitats. The fitted lines represent the ANCOVA fit for fresh- and saltwater
habitats at a constant concentration of chiorophyll a. The difference in the effect of temperature
between the two habitats is represented by the difference in slope. Squares represent eutrophic
fakes, triangles —mesotrophic lakes, crosses—marine habitats, and stars—estuarine and coastal
habitats,

fresh- and saltwater habitats (Fig. 2). No significant difference between habitat
was revealed for the chlorophyll effect. A strong interaction was identified
between chlorophyll concentration and temperature. Thus the effect of tem-
perature on specific growth rate rises with increasing chlorophyll concentration
(Fig. 3). The standardized regression coefficients indicate that temperature con-
sistently has greater impact on the specific growth rate than chlorophyll con-
centration. The separate regression statistics for the fresh and saltwater data
are symmarized in the bottom half of Table 4.

The relationship between SGR and temperature can alternatively be ex-
pressed as a Q,q, the increase in growth rate associated with a 10°C increase in
temperature. The values obtained are 3.3 for the entire data set, 3.9 for salt-
water, and 2.1 for fresh water.

None of the above models take differences in bacterial cell size into account.
When this is done for the minority of studies that report cell volume data, a
highly significant trend is revealed in the freshwater data set (Fig. 4). The
addition of cell size to the freshwater model results in a 15% increase in the
coefficient of determination. The two freshwater models, with {eq. (9)) and
without {eq. (10)) a cell size variable, are summarized below (F significance
<0.00001):
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2 | — 1 5 ' ' ! I
CHLA = 100
CHLA = 32
CHLA = 10
Tr CHLA = 32
b CHLA = 10
L P CHLA = 03

CHLA = 0.1
CHLA = 004

LOG SPECIFIC GROWTH RATE (DAY )

-1
i Ey
._2 - * + e
+ &
+
+
+
__3 Pt | % i i i ] i i

5 0 5 10 15 20 25 30 35 40

TEMPERATURE (°C)
Fig. 3. The relationship between bacterial specific growth (day~') and temperature (°C) at various
concentrations of chlorophyll a (CHLA in ug liter~'} in fresh and saltwater habitats. The fitied
lines represent the best ANCOVA model, ignoring the effect of habitat. The interaction between
CHLA and TEMP results in a slope increase as the concentration of chiorophyll @ increases. The
lines span chlorophyll concentrations from 0.04 to 100 g liter—!, the full range encountered in the

data set. Squares represent eutrophic lakes, triangles — mesotrophic lakes, crosses— marine habitats,
and stars—estuarine and coastal habitats.

log SGR = —1.91 + 0.049STEMP + 0.{)24TEMP-iog CHLA
(£0.018) {£0.016}
r*=0.69,n=51 (9
log SGR = ~2.22 + 0.036 TEMP + 0.0ISTEMPJog CHLA + 7.28VOL
(£0.013) (+0.012) (x3.01)
r?=10.84,n= 51 (10)

The. standardized regression coeflicients from the above model indicate that
the impact of cell size

; 1ze and temperature on bacterial growth in fresh waters is
3ar:1aost equal. No significant cell volume effect was identified in the saltwater

Discussion

'\If";lga%{l):l 1(1)1f this work was to dete_rmine and quantify those environmental
ot padle st .ath are capable of regu!atmg the production and specific growth rate
otrophic aquatic bacteria. To do this, data were collected from a wide

P E—
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Fig.4. The influence of mean cell volume on the relationship between specific growth rate (day~")
and temperature (°C) in freshwater. The size of the plotting symbol is proportional to the mean
cell volume. The smallest symbol represents 0.083 um?3, the largest symbol represents 0.19 pm3,

variety of both fresh- and saltwater ecosystems (Table 1). Before discussing the
implications of the results, it is appropriate to note constraints on the data
used and any associated biases. The freshwater data include only temperate
lakes, none of which are oligotrophic. The majority of the lakes (60%) are
mesotrophic, dimictic lakes; the remaining (40%) are eutrophic. Only one lake
inthe data set is meromictic. The saltwater data cover an extremely wide range
of habitats: temperate, subtropical, tropical, upwelling zones, Gulf stream,
Arctic, and Antarctic. However, the estuarine/coastal data are somewhat re-
stricted (slightly less than 24) to temperate coastal regions, with the remainder
obiained primarily from research conducted in subtropical U.S. coastal areas.

Bacterial Production

Usinga much larger data set than that available to Cole et al. [20], we confirmed
the relationship between bacterial abundance and production, as well as that
between bacterial production and chlorophyll a concentration {(Table 3). By
considering water temperature as an independent variable we significantly in-
treased the proportion of variation in bacterial production that could be ex-
Plained. When the effect of temperature is accounted for, the relationship be-
tween abundance and production is linear and identical for the three habitats.
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The effect of temperature on production is not‘equlvalent in the th::ieht;abbiizzs
studied, with the effect being most pronounch in the estuanne/(ci:pasd , essior;
followed by the marine and freshwater habitats. Thf? standardize hr g; o
coefficients indicate that for the entire data set, bacterial abundance has e
pronounced effect on production than does water temperature. Howevc;lr, o
the three habitats are examined individually, temperature seems to be lt € Iflnow.
important factor in the freshwater and estuanne/coas.tal habitats only. pow
ever, this result is not robust due to the high correlation between abun
erature. _ -

an’?‘l;?;?twater data revealed a small, but significant, negative effect of salinity
on bacterial production. Such a negative effect was pre‘_viously notcjd by Ducklow
and Kirchman [27], who reported a significant nega'aye correlation (Pearso_n 14
= —0.9) between *H-thymidine uptake and salinity in the < 3.0 pm fraction
of the Hudson River Estuary. This supporting evidence is biased by the fact
that the data of Ducklow and Kirchman are included in the data set. However,
the Ducklow and Kirchman data comprised only a small portion (slightly more
than 1%) of the total data set used to derive the model (6).

Growth Rate

To isolate the effect of temperature, specific growth rate (SGR), a growﬁla in-
dicator familiar to microbial ecologists [18], was used as the dependent variable.
The computed growth rate values, summarized in Table 2, range from 0.017
day™! to 8.7 day~! in fresh water and 0.0003 day~! to 30.81 day™! in saltwater
habitats. These values are comparable to those described in the recent literature.
Newell and Fallon [65] reported growth rates of 0.095 to 0.45 day~! off the
coast of Georgia at approximately 27°C, Tranvik and Hofle [90] reported rates
of 0.30 to 0.75 day~! in mixed lakewater batch cultures, and Ducklow [26]
noted rates of 0.07 to 0.63 day~! in warm core Gulf Stream rings. Extremely
small specific growth rates (<0.01 day~') were computed for some freshwater
lakes at temperatures less than 6°C, shortly after ice melt. The lowest specific
growth rates were found among the Antarctic data [32, 41], and are equivalent
to doubling times of several years. Such low growth rates likely indicate a high
fraction of dormant or nonviable cells. Alternatively, a large population of the
Antarctic cells, presumably psychrophiles, may be unable to incorporate ex-
ogenous *H thymidine into DNA. Such a possibility finds support in a variable

and sometimes very low degree of participation of cells in °H thymidine uptake
expemmentg, as measured by autoradiography [24, 33].

[44] from enclosure experiments.

The relationshig bgzwe_en specific growth rate and temperature accounts for
gl_most half the variation in growth rate. Again, the model revealed a significant
ifference between the effect of temperature in the three habitats. Although the

ght, they are significant. The inclusion

differences in the partial coefficients aresli
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of algal biomass (as concentration of chlorophyll @) increased the explained
variation in growth rate by 12% overall, to 56%. When both temperature and
algal biomass are considered, the difference between the marine and estuarine/
coastal relationships disappears, leaving a significant difference only between
fresh and saltwater habitats. The effect of algal biomass consistently had a
pronounced interaction with temperature. Thus, as the algal biomass rises,
temperature becomes increasingly important in regulating specific growth. This
is ot surprising since, at optimum levels of primary production, bacteria are
likely to be constrained by physical parameters such as temperature and nutrient
gvailability [23].

The standardized regression coefficients in the growth rate models (Table 4)
reveal that temperature is consistently the more important variable in deter-
mining the specific growth rate. This finding is not surprising given that both
in situ and laboratory observations have noted temperature as an important
positive regulator of bacterial production and specific growth rate [44, 48, 56,
72,93, 100]. The impact of temperature on specific growth rate may have
profound implications for the aquatic ecosystem. The potential for temperature
toregulate competition for nutrients in temperate freshwater habitats has been
described [21, 23, 72]. Currie [23] discusses the possibility that temperature
may regulate the timing of phytoplankton phosphorus limitation via regulation
of bacterial growth. Pomeroy and Weibe [72] discuss the possibility that tem-
perature may regulate nutrient competition between, not only bacteria and
phytoplankton, but detritivores as well.

Although the effect of algal biomass on bacterial growth was found to be
virtually identical in both fresh- and saltwater systems, the effect of temperature
isconsistently less in freshwater habitats. This may be due to the strong seasonal
variability of temperature in temperate zone freshwater habitats. In addition,
freshwater microbes are normally subjected to a dramatic variation in nutrient
availability, with this variability confounding the effect of temperature. The
relatively high supply of allochthonous dissolved organic carbon exported from
drainage basins, compared to the more labile organic carbon from decaying
algae which predominates in the marine system [43], may further confound
theeffect of temperature on the specific growth of lacustrine bacteria. The quite
limited riverine data, of which approximately 80% were obtained from studies
of blackwater rivers (extremely high in allochthonous dissolved carbon), did
not fit the model at all. If this is due to a high concentration of allochthonous
carbon, it would seem to suggest that it may be necessary to add a growth yield
term to the freshwater models.

The seasonal and spatial variability of freshwater systems may also contribute
lo the low r? encountered in the freshwater models. Conversely, the higher r2
encountered in the saltwater models may be the result of the apparent stability
of saltwater systems, relative to temperate lakes. Alternatively, the inability of
the model to explain growth rates in freshwater may be attributable to meth-
odological problems. The large degree of spatial and temporal variation in
dissolved organic carbon may affect the concentration of exogenous thymidine
tapable of diluting the labelled substrate [8]. Cole et al. [20] also noted a low
" for freshwater models relating bacterial production to net primary produc-
tion. They suggested that some of this unexplained variation might be attrib-
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utable to differences in conversion factprs used to c_:qnv;;n ;Ht é?;ig:gl:;; E_P;&;iiz
to prodgction in those studles’that did not empmzaedyb z o e hatwon,
conversion factor. These problems may be compoun Yy nd Jones
the microbial communities of fresh- and salj[waterasystems. J qhnsgonee i oo
[50] have demonstrated lack obf ilncorporanfzn of *H-thymidine by ¢
i f the freshwater microbial community. o ‘

uolizsd?)es not appear that much of the unexplained variation in the n’:iodét?is) is
attributable to differences in methods used to dete::mz.ne. secc_ndary p;'o u(‘iho:‘
Models using *H thymidine data only are almost indistinguishable ronglo% 0‘;
including all data. Of course this is likely due to the fact that almost

the data used the *H-thymidine technique. However, good agreement bet‘geen
’H-thymidine method and other methods such as dark "C uptake have been
noted [86]. )

The [mo}del relating specific growth rate to temperaturq and qlgai biomass for
freshwater (Table 4) was significantly improved by the inclusion of mean cell
volume (um?). Neidhardt [64] states that small cells actually do grow moée
slowly, and this has also been observed in situ [22, 38]. Alternatively, the
observed effect of cell size on specific growth may be due to the,use Qf a constant
carbon per cell conversion factor of 29 fg, leading to overestimation Of small
cell growth and underestimation of large cell growth. While the:s.e results are
interesting, they are based on data from a small number of studies. No effect
of cell volume could be identified in the saltwater data, which was even more
limited. The conversion factor of 29 fg cell”!, assumed for thesc:: analyses,_may‘
not be appropriate for some systems, though no consensus exists regarding a
more appropriate value. »

The models presented confirm that temperature is an important positive
regulator of bacterial production and growth in aquatic systems. Thergfore,
realistic production estimates must be taken at in situ temperature. Consistent
cell size measurements, taken in conjunction with production and biomass
measurements, will clarify the relationship between cell size and growth. Fur-
ther clarification of the effect of cell size on carbon content, and factors that
contribute to methodological uncertainties, would allow more accurate mea-
surements of specific growth rate. Moreover, the relationship of cell size and
growth rate {0 seasonal factors, such as ice cover, nutrient pulses, allochthonous
organic matter, and grazing, seems a promising area for investigation.
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