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Statistical Assessment of Violations
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Section 303(d) of the Clean Water
Act
E R I C P . S M I T H , * , † K E Y I N G Y E , †

C H R I S H U G H E S , † A N D
L E O N A R D S H A B M A N ‡

Department of Statistics and Department of Agricultural
Economics, Virginia Tech, Blacksburg, Virginia 24061-0439

Section 303(d) of the Clean Water Act requires states to
assess the condition of their waters and to implement plans
to improve the quality of waters identified as impaired.
U.S. Environmental Protection Agency guidelines require
a stream segment to be listed as impaired when greater than
10% of the measurements of water quality conditions
exceed numeric criteria. This can be termed a “raw score”
assessment approach. Water quality measurements are
samples taken from a population of water quality conditions.
Concentrations of pollutants vary naturally, measurement
errors may be made, and occasional violations of a standard
may be tolerable. Therefore, it is reasonable to view the
assessment process as a statistical decision problem.
Assessment of water quality conditions must be cognizant
of the possibility of type I (a false declaration of standards
violation) and type II (a false declaration of no violation) errors.
The raw score approach is shown to have a high type I
error rate. Alternatives to the raw score approach are the
Binomial test and the Bayesian Binomial approach.
These methods use the same information to make decisions
but allow for control of the error rates. The two statistical
methods differ based on consideration of prior information
about violation. Falsely concluding that a water segment is
impaired results in unnecessary planning and pollution
control implementation costs. On the other hand, falsely
concluding that a segment is not impaired may pose a risk
to human health or to the services of the aquatic
environment. An approach that recognizes type I and type
II error in the water quality assessment process is
suggested.

Introduction
The Total Maximum Daily Load (TMDL) process now
dominates water quality policy discussions. Policy reviews
(1), lawsuits (2), regulations (3), and congressional interest
(4, 5) all have been directed to what had, until recently, been
an obscure provision of the Clean Water Act. The TMDL
process originates with Section 303(d) of the Clean Water
Act (6). That section requires states to conduct an assessment
of and then report on the condition of their waters. In practice,

this means that the states review the water quality conditions
in specific segments in a water body (a lake, bay, or river)
using a specific water quality monitoring location within the
segment.

Each state’s 303(d) impaired waters list identifies segments
where anthroprogenic loads of pollutants are leading to
violation of water quality standards. The listed segments must
remain on the list until the identified pollution problem has
been addressed or until evaluation of subsequent monitoring
data or other information suggests that the segment was
misclassified or the problem remediated. Addressing an
identified water quality problem for a Section 303(d) listed
water is a complicated and potentially expensive process.
First, a watershed study is initiated to establish the maximum
quantity of each pollutant that can be discharged to a segment
if the segment is to meet water quality standards. Once the
maximum load is defined, there are a series of steps to allocate
responsibility for load reduction, to identify pollution sources,
and to secure those reductions over time. These steps
constitute the TMDL watershed study and implementation
plan (7).

Planning alone can be costly. In comments to the U.S.
Environmental Protection Agency (U.S. EPA), states agencies
concluded that 25% of TMDLs will be simple and will cost
$50 000-200 000, 65% of TMDLs will be of moderate difficulty
and will cost $300 000-400 000, and 10% of TMDLs will be
complex and will cost $600 000-1 000 000 (5). A state may
have hundreds of segments on its impaired waters list (8).
Then, implementation of a TMDL plan imposes additional
and perhaps substantial pollution control costs. Given limited
resources available for programs of water quality improve-
ment planning and implementation, it is important that
waters that are truly impaired be identified. Also, water listed
as impaired may cause people to avoid use of that water and
benefits to society may be forgone. For these reasons, it is
appropriate to review how the list of impaired waters is
constructed during the water quality assessment process.

A review is especially warranted because water quality
standards, monitoring protocols, and guidelines for assessing
data were developed before the TMDL program took on its
current significance and may have been developed for
different purposes. A review of the Section 303(d) assessment
process might examine the basis and intended purpose of
the water quality standards themselves. Also, such a review
might evaluate the monitoring protocols that secure the data
used to make the listing determination. In this paper, we
review the guidelines for interpreting the monitoring data
that are collected. Specifically, we evaluate the U.S. EPA
assessment guidelines for comparing sample measurements
of water quality conditions with numeric ambient water
quality standards.

Numeric water quality standards are measurable criteria
for dissolved oxygen, temperature, pH, and fecal coliform
bacteria counts. Critical to the Section 303(d) assessment is
the monitoring data collected by a state’s environmental
department to assess whether stream conditions meet
standards. Cost realities, given the need for statewide
monitoring and the fact that most monitoring is for enforce-
ment of point source discharge permits, results in a limited
number of stations and samples for each station. For example,
Virginia waters are among the most monitored in the nation
with over 17 000 mi of monitored waterways. Virginia’s
significant monitoring program collects data at each station
on a quarterly basis. The Section 303(d) assessment occurs
every 2 yr, so the Section 303(d) assessment might be based
on 2 yr of data at a particular station (approximately eight
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observations; 9). The reality of limited data must be recog-
nized in the Section 303(d) assessment process.

The assessment challenge is to interpret the limited
amount of sample data to determine whether an apparent
violation of standards warrants listing a segment as impaired.
Likewise, limited data must be relied upon to determine
whether actions taken to address water quality degradation
have had the desired results. The samples taken are affected
by variability in human activity and natural or background
conditions. Also, there are certain acceptable tolerances for
violations. For example, an occasional violation of a dissolved
oxygen standard, even if by anthropogenic sources, may not
be critical for the aquatic environment. In addition, meas-
urement errors in the analysis of the samples collected could
be yet another reason the numeric standard might be violated
in a sample. It appears that the U.S. EPA guidelines recognize
these arguments because the guidelines require a water to
be listed only if more than 10% of the samples violate the
standard (10). In effect, the assessment guidelines imply that
a violation of the numeric criterion is acceptable in 10% of
the samples taken.

If the number of samples at a stream location greatly
increases in frequency, conceptually approaching one for
each hour (for example), the U.S. EPA guidelines suggest
that it is acceptable for a standard to be violated 10% of the
time. A statistical representation of this perspective is shown
in Figure 1. In Figure 1, the measurement is a concentration
of some contaminant in the ambient water. The distribution
of the water quality parameter may be drawn to represent
the likelihood of ranges of values. As displayed, the water
quality standard requires that a concentration of 3.0 or less
should be met 90% of the time, although some measurements
may exceed the standard naturally.

The U.S. EPA guidelines suggest what can be called a raw
score test to decide if a segment is impaired. The test statistic
is the number of measurements that exceed the standard.
The critical value is 10% of the sample size. Because the
number of samples is typically not a multiple of 10, the
approach requires truncation. If there are five samples and
one or more exceed the standard, the site is declared
impaired. The same is true for all sample sizes between 1
and 9. For sample sizes between 10 and 19, one sample is
allowed to exceed the standard but not more. However, the
raw score approach does not include consideration of the
likelihood and costs of making an erroneous listing. Suppose
eight samples are taken, and a raw score analysis is completed.
If one of the samples (>10%) exceeds the standard, the site
would be declared impaired. However, the one sample that
violates the standard might be attributed to natural variability
or an unusual human activity. In this case, the site may be
classified as impaired when in fact this is not the case. This

error is referred to as a type I error. Another error may occur
when a site is truly impaired, but the sampled measurements
from the site do not exceed the standard, and the site is not
declared impaired. This error is referred to as a type II error.

In this paper, the error rates associated with the raw score
approach and two statistical approaches are evaluated. The
comparisons are made in terms of type I and type II error
rates. One alternative to the raw score approach is the
Binomial test. Both the raw score and the Binomial methods
treat the sample observations as binary values, either
exceeding the standard or not exceeding the standard.
Another alternative to the raw score approach is the Bayesian
version of the Binomial test. This method uses prior
information about violation probability with sampled in-
formation to calculate a probability of violation that may
then be used to make a decision. The three methods are
evaluated in terms of their error rates. This evaluation of
alternative approaches leads to a recommendation for
improving water quality assessments in the Section 303(d)
process.

Statistical Approaches
The Section 303(d) water quality assessment process is a
statistical decision problem. Specifically, from a sample of
water quality measurements the water quality assessor must
decide if the site is impaired. Given uncertainty in the
measurement and sampling process, one may use hypothesis
testing to help with the decision process. In the statistical
approach to impairment, the null hypothesis is that the site
is not impaired. The alternative hypothesis is that the site is
impaired. The hypothesis may be framed in terms of a
parameter p describing the true degree or probability of
impairment and p0, the “safe level” or hypothesized prob-
ability of impairment under safe conditions. The impairment
decision is based on the test H0: p e p0 versus H1: p > p0

where p0 is a constant between 0 and 1 (in the current
problem, it is 0.10). Under this framework, the two error
rates [declare segment impaired when it is not (type I error
or a false positive) or designate the segment as not impaired
when in fact it is (type II error or false negative)] may be
evaluated. The error rates are bounded between 0 and 1,
with 0 indicating no error. However, given the sample sizes
likely to be available, both errors will not be close to zero.

Because both type I and type II errors always will be
present, water quality managers must choose (directly or
indirectly) the tolerable amount of error. In principle, this
choice should be based on an explicit consideration of the
consequences (costs) of being wrong. Costs may be financial
outlays made by governments or private individuals. Costs
might be forgone public values that may not be reflected in
markets. In the following sections, the tradeoff among error
types is considered without regard to the cost of being wrong.
Costs are considered in the Discussion section of the paper.

The raw score approach uses limited, binary information
to make the impairment determination. An alternative to
the raw score, the Binomial testing approach focuses on the
probability of violation using the same information. The
Bayesian approach varies the Binomial method by using
information from other sources about the probability of
violation.

Binomial Method. When applying the Binomial approach,
observations exceeding the numeric criterion are assigned
the value 1, and those that do not are assigned the value 0.
Then if n independent samples are collected, the number of
observations exceeding the criterion (the number of 1’s) may
be viewed as a Binomial random variable with parameters
p and n (11). Using the Binomial model, one may then test
the hypothesis that the probability of exceeding the standard
is less than or equal to 0.10 (H0: p e 0.10, not impaired)

FIGURE 1. Plot of distribution of hypothetical chemical concentra-
tion. The standard allows for exceeding a concentration of 3 10%
of the time.
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versus the alternative that the probability is greater than 0.10
(H1: p > 0.10, impaired). With this approach, error rates
associated with impairment declarations may be evaluated,
and a process to limit the error rates can be described.

In a typical statistical analysis, the type I error rate is
chosen by the assessor, perhaps in consideration of costs of
being wrong. If the rate chosen is 0.10, then there is a 10%
chance of making a type I error. For the Binomial method,
the choice of the type I error rate determines the “cutoff”
value. For a given sample size n, the cutoff is selected as the
number of violations to make the probability of this many
or fewer violations to be as large as possible but less than the
type I error rate, assuming that the null hypothesis of no
impairment is true. Given the cutoff and the alternative for
the frequency of violation, the type II error rate for sample
size n can then be calculated. The type II error rate may be
reduced by choosing a greater type I error rate (for example
0.20), by increasing sample size and/ or by decreasing
measurement uncertainty. With statistical procedures, it is
common to select the type I error rate at 0.05 or 0.10 and to
control the type II error rate through sample size.

Bayesian Approach to the Binomial Test. In the above
analysis, the probability of exceeding the standard is treated
as fixed and the data (i.e., does the sample exceed the
standard) are treated as random. A Bayesian approach (12)
computes the probability that the site exceeds the standard
by treating the impairment probability as a random variable
that has an associated distribution. Initially the form of this
distribution is based on previous information and is referred
to as the prior distribution. After data are collected, the prior
is updated, and the data and prior are used to compute the
posterior distribution of the impairment probability using
Bayes rule. Based on this posterior distribution, a decision
may be made using either a cutoff approach or an odds-ratio
approach (Bayes factor). This process and the mathematical
details are described in more detail in the Supporting
Information and ref 13.

Suppose there is a Binomial random variable with
associated sample size n and parameter p. Suppose now
that a prior distribution of p, π(p), can be specified. A prior
distribution for p might be developed by introducing
additional information to the analysis. One possibility is to
use samples from other similar sites that are not impaired.
For the unimpaired sites, information would be collected,
and the prior probability of exceeding the standard calculated.

Given observations and a prior distribution, Bayesian
criteria can be used to make an inference about p. Using the
prior and data, the posterior distribution of p may be written
as

where f(x|p) is the density of the data, x, given p.
This new distribution represents current knowledge about

the probability of a violation found by updating the prior
information. Using the above distribution, the posterior
probability of the null and alternative hypotheses may be
calculated. For the null hypothesis (H0) that the site is not
exceeding standards, the probability is computed as R0 )
P(H0|data) ) P(p e p0|x). For the alternative (H1) that the site
is exceeding standards, the posterior may be calculated as
R1 ) P(H1|data) ) P(p > p0|x). Two approaches for evaluating
these probabilities and making decisions are the cutoff
method and the ratio method.

The cutoff method uses the posterior probability to
determine the rejection rule. To do this, predetermine a
probability q (analogous to the Binomial method type I error
rate, q might be specified as 0.10). If the posterior probability

that the alternative hypothesis is true exceeds q, then we
reject the null hypothesis and conclude that the water is
impaired, i.e., P(H1|data) > q. The quantity q is referred to
as the posterior cutoff.

The odds-ratio method uses the Bayes factor to determine
the rejection rule. The Bayes factor of H1 against H0 is the
odds ratio of the posterior probability of H1 against H0 divided
by the odds ratio of the prior probability of H1 against H0.
It can be expressed as

A large value of the Bayes factor would indicate that the null
hypothesis is not correct. Kass and Raftery (14) (see also ref
15) suggest that when B10 is between 3 and 20, the evidence
of H1 against H0 is strong. Bayes factor cutoffs of 3 and 10
were used in our examples.

The difference between the cutoff and odds-ratio methods
is in the importance given to the prior. The influence of the
prior is usually diminished if the Bayes factor method is used.
Because of the possible subjectivity of the prior, decision-
makers may want to choose to use the Bayes factor approach.
If the available prior information is empirical, the cutoff
method might be adopted.

Both methods require evaluation of the prior probability
of the null and alternative hypotheses. Using a weighting
factor v (between 0 and 1) that balances the prior distribution
between null and alternative hypotheses may extend the
method. A value of v that is near 1 would indicate a stronger
belief in the null hypothesis. In the figures comparing the
methods, we refer to this value as p(H0) or prior(H0). Details
of the computations are given in the Supporting Information.

To compare the error rates, the acceptable probability of
violation is set at 10%. The analysis assumes that the water
quality parameter of interest has a distribution that does not
change over time and that the samples collected are
independent of each other. On the basis of these assumptions,
the variable that indicates if a sample exceeds the standard
may be modeled as a random variable, with an associated
probability of violation. The listing decision process may be
viewed as a test of the null hypothesis that the probability
of violation is less than or equal to 10% versus the alternative
that it is greater than 10%. The type I error rate may then be
computed. To compute a type II error rate for this illustration
(given the site is impaired, how likely is it that we do not
detect impairment), the true probability of exceeding the
standard must be specified; this percentage is set at 25%.
This value was selected as indicating severe problems and
represents the minimum violation percentage we would
almost always want to detect. Using this framework, the
distribution may be used to calculate the error rate for the
raw score method by calculating the probability of not
rejecting the null hypothesis (i.e., getting less than a
statistically significant number of violations). To evaluate
decision rules based on the Bayesian method, we considered
three situations for method 1 with a uniform prior for p (v
) 0.50, 0.90 and 0.99, q ) 0.1) and two values of cutoff for
method 2 (using Bayes factors of 3 and 10).

Results
Type I error rates for the raw score, Binomial, and Bayesian
methods are presented in Figure 2, and type II error rates are
presented in Figure 3. The type I error rates are compared
using calculations of Binomial probabilities under different
sample size scenarios where p was set to 0.10. The probability
that a site is declared as impaired when in fact it is not (false
positive) is displayed in Figure 2. Note that the graphs are
jagged, with each spike corresponding to a change in the

π(p|x) )
f(x|p)π(p)

∫0

1
f(x|p)π(p) dp

B10 )
P(H1|x)

P(H0|x)
/

P(H1)

P(H0)
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critical value (i.e., number of violations required to declare
impairment). The Binomial method controls for type I error
(i.e., it is always less than or equal to a preset value of 0.10),
and the raw score approach does not. With the Binomial
method, the type I error rate is fixed at some value (referred
to as R) that is an upper bound on the error. The actual error
rate for the Binomial method is determined by computing
the (cumulative) probability of getting less than “x” samples
exceeding the standard. The actual type I error rate is
calculated as the greatest cumulative probability that does
not exceed R. Figure 2 shows that the type I error rate (a false
declaration of impairment) for the raw score method is quite
high relative to the Binomial. For example, with a sample
size of 9 the type I error rate for the raw score approach is
around 61%. With one more sample, it drops to 26% (an
example of the effect of truncation) but is still roughly 3
times the type I error rate of the Binomial approach. Error
rates this high are not used in standard statistical practices.
As sample size increases, the type I error rates for the different
methods do not converge. Thus, relative to the Binomial

approach, the raw score approach is prone to type I error (a
false declaration of impairment). Type I errors for the
Bayesian method decrease with increasing p(H0). Priors for
H0 near 0.5 are similar to the raw score approach while priors
near 0.9 are closer to the Binomial approach. Having a high
prior opinion that there is no impairment leads to making
fewer decisions that there is impairment when there is none.
The Bayes factor methods produce results that have smaller
type I error rates than the Binomial method. Using a higher
factor for rejection leads to smaller type I errors.

Figure 3 presents type II error rates. We assume for the
computations that the actual level of impairment is 25%, so
the segment violates standards; however, the violation is not
detected. In statistical terms, this represents failure to reject
the hypothesis that the violation rate is equal to 0.10 when
in fact the violation probability is 0.25. In this case, Figure
3 is reversed from Figure 2. The Binomial method is prone
to type II error relative to the raw score method. For example,
with a sample size of 9, the type II error rate for the Binomial
is about 8 times the rate for the raw score approach (60%

FIGURE 2. Type I probabilities for various methods. The Binomial method is based on setting the type I error rate at 0.1. Symbols: 0,
raw score; 2, Binomial; 4, p(H0) ) 0.5; O, p(H0) ) 0.9; +, p(H0) ) 0.99; ], BF 10; ×, BF3.

FIGURE 3. Type II probabilities for various methods. P(H0) ) 0.9 represents the Bayesian method with a prior of the null hypothesis set
at 0.9; BF3 refers to the Bayes Factor method using 3 as a cutoff. The symbols are the same as in Figure 2.
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versus 7.5%). With one more sample, the ratio decreases to
about 2 times (a result of the effect of truncation). As sample
sizes get larger, the type II error rates do converge to zero,
which is to be expected. These results are appropriate for the
case of a critical error being associated with a violation
probability of 0.25 and a preset type I error rate of 0.10. The
results indicate that the chance of a type II error using the
Binomial method decreases with an increase in the type I
error rate and with increased sample sizes. For sample sizes
of n ) 8, the type II error is 0.37 for a type I error of 0.20 while
for a type I error of 0.10, the type II error is 0.68. For n ) 20,
the error rates are 0.23 versus 0.41. The pattern for the
Bayesian approaches is similar, and only two of the Bayesian
approaches are displayed in Figure 3. Type II error rates
decrease as the prior probability that the null is true decreases.
The curve for p(H0) ) 0.5 is closer to the raw score method
than is the curve for p(H0) ) 0.9. When our belief that the
null is true is higher, we are more likely to decide an impaired
site is not impaired. Similarly, if the Bayes factor criterion is
small (e.g., 3.0) then we are more likely to declare impaired
than if we use a large Bayes factor criteria (e.g., 10). This
leads to higher type I and smaller type II for smaller criteria.
In terms of type II error, we have

Figure 4 displays the average error rate for different sample
sizes. This display is interesting in that the average error rate
diminishes and approaches the same value for the statistical
approaches but not for the raw score approach. This results
from the type II error rate decreasing as a function of sample
size and low type I error rates (for methods other than the
raw score). Again it indicates that the error rates for the
statistical methods have controllable error rates that may be
made reasonably small while the raw score method has a
large error rate.

One possible approach to addressing the different error
rates is to seek to make type I and type II error rates the same
for each sample size (16). In effect, this implies that the cost
of type I and type II errors are the same. Another argument
for balancing the error rates is that the errors are less affected

by switching the null and alternative hypothesis. Instead of
considering H0: p e p0 versus H1: p > p0, it may be better
to use the hypotheses H0: p g p0 versus H1: p < p0. With
balanced error rates, the choice of the null and alternate
hypotheses is less important. In Figure 5, the error rates are
plotted against sample size using a Binomial test with the
null p ) 0.1 and the alternate p ) 0.25, with cutoff values
chosen to make the error rates as close as possible. If there
are at least these numbers of samples exceeding the standard,
the site is declared impaired. Cutoff values are plotted on a
second vertical axis. Note that for small sample sizes it is
difficult to equate the error rates although there are sample
sizes where the error rate lines cross. Examples are n ) 10,
type I error ) 0.26, type II error ) 0.24, and cutoff ) 2; n )
16, type I error ) 0.21, type II ) 0.20, and cutoff ) 3; n ) 22,
type I error ) 0.17, type II error ) 0.16, and cutoff ) 4. Note
that if it is desired to have both error rates around 10%, then
a sample of size 34 would be required (cutoff ) 6, type I error
) 0.12, and type II error ) 0.11).

Relative to the EPA raw score approach, the Binomial
method (with common choices for the type I error rate) is
more prone to type II error and less prone to a type I error.
The tendency toward type II errors in either approach is
mitigated by increased sample size, although even at sample
sizes over 20, type II error rates for the Binomial are around
2-3 times higher that the raw score approach. An advantage
of the Binomial approach is that it is more flexible in the
choice of cutoff through the selection of the type I error rate,
with type II errors controlled through sample size. This means
better control of error rates and the possibility of setting
error rates to the same value. Specifically, at sample sizes of
around 25 type I and type II error rates with the Binomial
method can be made around 20% for each type of error.
With the raw score approach, there is no control over the
type I error rate. The Bayesian approach allows for control
of the error rates through the choice of cutoff and prior
opinion. While the results may be similar to the Binomial,
the Bayesian method may be intuitively more appealing to
managers. It allows managers to set prior belief about how
likely sites are to be impacted. Sites with a high prior for
impairment require fewer violations to declare impairment

FIGURE 4. Average error rate of the different methods using different sample sizes. P(H0) ) 0.9 represents the Bayesian method with a
prior of the null hypothesis set at 0.9; BF3 refers to the Bayes Factor method using 3 as a cutoff. The symbols are the same as in Figure
2.

p(H0) ) 0.99 g BF10 g Binomial g BF3 g p(H0) )
0.9 g p(H0) ) 0.75 g raw score
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while sites with a high prior for no impact would require
more violations to declare impairment. Selecting priors can
be difficult when there is little information, and the analysis
becomes subjective and subject to criticism. However,
support for these probabilities could come from previous
Section 303(d) reports and surrounding sites. This would
lead to more objective formulation of priors and would make
the Bayesian approach a sound alternative.

Discussion
Ideally, the choice of an error rate should be a risk
management decision based on explicit consideration of the
consequences (costs) of being wrong. Cost may be financial
outlays made by governments or private individuals. For
planning and pollution control, costs also might be forgone
public values that may not be reflected in markets as people
avoid use of waters that are listed as impaired and calculation
of these costs may be more or less certain. Consider as an
example, a violation of a fecal contamination standard.

First, the assessor recognizes there is a cost of a false
positive (type I) error that initiates the listing and the TMDL
process. There is a cost to TMDL planning and modeling
that is significant financial outlay. Each study is a claim on
a limited agency budget, and so available resources are spread
out more thinly as the number of segments listed as impaired
increases. Therefore, in the face of limited budgets, a segment
that is declared impaired when it is not impaired may divert
limited resources from actual to false problems. Once the
impairment is declared, there may be public avoidance of
the segment and a loss of public use values. Once again, if
the segment is not impaired, then those values forgone are
an unnecessary cost. Next, planning moves forward and there
are implementation costs (BMPs, etc.) imposed to change
practices at the suspected source of the pollutant. Such
implementation costs might be imposed on public agencies
and the private sector at the end of the TMDL process. These
considerations argue for selecting a decision process that
might avoid type I error.

The assessor must also consider the possibility of declaring
a segment as safe when in fact it is impaired (a type II error),
especially when human health is at issue. Missing a fecal
coliform problem may lead to an outbreak of infection with

high costs to individuals. Low levels of dissolved oxygen may
result in economic loss to fisheries and loss of species. Costs
to human and environmental health may be great when a
type II error is made and thus argue for selecting an decision
process that might avoid a type II error.

Even when a site is correctly identified, there may be issues
associated with action. For example, in the case of microbial
contamination there is much uncertainty about the source
and pathways for the pollutant and the effects on human
health (17). There may be uncertainty about whether the
measured contaminant poses a health risk, there may be
uncertainty about the exposure to the pollutant (who swims
in a creek and when for example), there may be uncertainty
about whether the exposed population will in fact be affected
by the contaminant even if it is in the segment, and finally
the severity of the reaction to the exposure may be uncertain.
These possible costs, despitesor perhaps because ofstheir
uncertainty, might make the assessor willing to accept a
higher type II error.

The significant consequences of a Section 303(d) listing
or of a failure to list makes the interpretation of sample data
especially critical. Therefore, the analytical approach that
extracts the most information about water quality conditions
from a data set should be employed. In particular, the
approach used should allow the water quality assessor to
explicitly recognize and consider the different errors that
might be made, the consequences of those errors, and then
assess water quality conditions in consideration of the errors
and their possible costs. If a Binomial procedure is adopted,
error rates can be explicitly managed by the water quality
assessor by controlling the number of samples taken, by
selecting the acceptable and unacceptable violation rates,
and/or by selection of the cutoff values for declaration of
impairment. Such choices might be governed by the concerns
over the consequences of a type I versus type II error,
considering the pollutant and the uses of the water segment.

The U.S. EPA mandated raw score approach to data
analysis does not explicitly manage error rates. The raw score
approach is conceptually similar to the Binomial test. Both
methods use the number of violations as the test statistics.
However, the raw score is a poorly designed test statistic. As
the computational results document, the raw score approach

FIGURE 5. Error rates and cutoffs for different sample sizes, trying to make the type I and type II error rates as close as possible for the
Binomial test. Cutoff values correspond to the minimum number of samples that may exceed the standard to declare the site as impaired.
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results in an unusually large type I error rate, regardless of
sample size. As sample sizes increase, the type II error rate
is reduced, but the average error rate is still large. Indeed,
in other contexts, approaches to evaluating standards have
been criticized for a number of reasons, including the inability
to consider and manage error rates (18).

The results show that the Binomial method can be easily
applied to address the balancing of error rates, using the
same data that are now used to apply the raw score approach.
The Bayesian approach changes the view of the error rates
by focusing on prior probabilities and cutoffs and will require
the assessor to have a basis for establishing a prior expectation
about the condition of the water segment. One method for
selecting the priors is to make use of information from
surrounding sites or from previous reports. Given the
familiarity most assessors will have with the conditions in
watersheds under study, this may not be a significant
additional information requirement.

Given the information routinely used in an assessment,
the Binomial method should replace the raw score approach.
When sample sizes are around 20-25, the assessment process
can confidently rely on statistical procedures to manage and
measure type I and type II errors. Such an increase in sample
sizes might be readily obtained by extending the data record
from 2 to 5 yr, assuming quarterly sampling. However,
accounting for possible trends in the data (9) may be
necessary.

It has also been recognized that type II errors are more
likely to occur with the statistical methods than with the raw
score approach. While the increased sample size will reduce
the probability of type II error, water quality assessors may
feel that the statistical approaches are still too prone to type
II error. One strategy for reducing the type II error would be
to increase the type I error rate. The desired error rates need
to be set through discussions with interested parties and
when agreement is not possible, we suggest balancing the
error rates.

Given the information routinely used in an assessment,
the Binomial method should replace the raw score approach
when sample sizes are greater than 20. With samples smaller
than 20, neither the raw score or the Binomial method
adequately control the error rates. Given sufficient prior
information, Bayesian methods may be used with smaller
sample sizes to help select the error rate of concern. Agencies
should be encouraged and provided the resources to increase
sample sizes for the assessment process to adequately control
these error rates.

Although our focus is on the Binomial approach for
evaluation of impairment, there are other statistical ap-
proaches available that make use of the actual measurements
rather than if the measurement exceeds the standard.
Acceptance sampling by variables (19) is a method based on
using the mean and variance of the measurements rather
than simply if they exceed a standard. The method converts
questions about the proportion exceeding some value to
questions about a mean. Tolerance intervals and prediction
intervals also represent useful approaches (20-22). Tolerance
intervals are intervals for a percentile of the samples. Another
method is based on comparison of a reference site with that
sampled (23). Such approaches are common in groundwater
evaluation. These methods evaluate the information in a
different manner and may be quite useful. As with all decision
procedures, these methods also require consideration of error
rates before implementing.
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