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Executive Summary

h

During the process of updating Oklahoma's state water plan, the Oklahoma Water Resources
Board (OWRB), in consultation with the Oklahoma Climatological Survey (OCS) and in agreement
with U.S. Geological Survey (USGS) Circular 1331, has identified a need for water supply planning
tools and methodologies that allow for the inclusion of climate change considerations and are
practical, useable, and available to a broad range of water planners. There is a perceived
disconnect between high level climate change research and modeling undertaken by the
scientific and academic communities and the "on the ground" planning requirements of water
providers. These requirements include, for example, quantifying potential climate change
impacts on water supply availability, water demands, water quality, flood risk, and reservoir firm
yield. The overarching goal of the study presented here was to move toward resolving this
disconnect through the demonstration of methods and tools that are effective and defensible at a
planning level, while simultaneously cost-effective and practical given the constraints associated
with most planning studies. This work directly addresses Research Area B of the Bureau of
Reclamation's (Reclamation's) 2011 WaterSMART Program Funding Announcement

(No. R10SF80326) by investigating multiple methods for translating climate projections into
estimates of water supply availability via explicit and implicit hydrological modeling.

Methods for analyzing a wide range of climate change projections, and for translating these data
into hydrologic forecasts, are presented and compared via case study applications focused on
two basins in western Oklahoma. Key to this is the comparison of simplified hydrologic modeling
approaches with more complex options and evaluation of projection uncertainty. Methods of
"ensembling" climate model projection data are investigated - specifically an approach based on
random ("stochastic") sampling of data from multiple models and the Reclamation "hybrid delta
ensemble” method. Hydrologic modeling approaches investigated here include: a process-based
catchment scale model (Water Evaluation and Planning [WEAP]), a set of simple empirical
regression models describing the relationship between stream flow and key climate drivers, and
the newly available "gridded runoff" data set generated from macro-scale process-based
modeling. Lastly, a reservoir firm yield model is used to generate a suite of yield projections
reflective of future (2060) climate conditions.

Results demonstrate large uncertainties at multiple stages of the study process. Uncertainties
associated with hydrologic model selection appear to be as great as those associated with climate
model projections. Sensitivities to climate data ensembling techniques are also demonstrated.
Since simple hydrologic models are shown to be as effective as more complex options for this
type of application, it is recommended that, for similar applications, project resources be
prioritized towards capturing climate projection variability rather than developing sophisticated
hydrologic models. If feasible, the use of multiple hydrologic models is recommended as a way of
quantifying uncertainty associated with this step and validating models. In lieu of addressing
uncertainty directly through analysis, results of this study indicate that a margin of safety on the
order of 30 percent might be appropriate for planning.
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Executive Summary

Lastly, results demonstrate significant potential impacts of climate change on surface water yields in
western Oklahoma. These arise from a combination of projected reductions in precipitation, changes in
annual sequencing of precipitation (e.g., extended droughts), and increased evaporation and
evapotranspiration (ET) due to temperature increases. Water resources practitioners are encouraged to
consider these impacts in planning studies.
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Section 1
Introduction

h

Climate change science is evolving and becoming more accessible for water resources planning.
For example, modeling projections of both future climate (precipitation [P]and temperature [T])
and surface runoff, representing 116 different sets of climate model projections, are now readily
available for public download (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections). These
data have been downscaled to a useable spatial resolution for water resources planning studies
(1/8° degree grid, 8 miles by 8 miles). They have also undergone "bias correction” to achieve
acceptable reproduction of historical climate data and lend confidence to the predictions of the
future. The data set represents a highly valuable contribution to the water resources planning
community. However, challenging questions persist with respect to how best to use these data
for water resources planning. There is a risk of under-using the available data and modeling
options and poorly informing decisionmaking due to scope limitations. There is also a risk of
getting "lost" in the spectrum of available data and not generating useful results. These risks are
primarily attributable to the large volume of model output now available and the uncertainty
associated with these output - as demonstrated by the range of values projected. Methods that
are both practical and defensible are therefore required for incorporating climate change science
into water resources planning studies and for addressing the uncertainties in the analysis.

1.1 Modeling Uncertainty

Multiple potential sources of uncertainty exist in climate change studies for water resources. The
first major source of uncertainty is that directly attributable to differences in the global climate
models (GCMs) used to develop the projections described above. These differences include
differences in model construction, parameterization, and underlying assumptions. As stated in
Brown (2011), "There are many sources of uncertainty that affect the projections, including
uncertainty in the response of the Earth's climate system to greenhouse gas emissions, errors in
the ways the models represent the Earth's climate system, and the unknown greenhouse gas
emissions of the future. In some cases, the differences between projections from different models
are so wide that planning for one climate projection would contradict planning for another."

A second major source of uncertainty in these types of studies is the modeling used to translate
climate projections into the hydrologic parameters required for planning models (Xu et al. 2011;
Prudhomme et al. 2009; Minville et al. 2008). Hydrologic modeling is subject to the same types of
uncertainty identified for the climate models, resulting from basic model construction and
underlying mathematical equations and assumptions and from model parameterization. No
model is perfect in its numerical representation of complex natural processes; there is error in
every prediction. The magnitude of this error is unknown - thus the uncertainty. We can reduce
model uncertainty, and increase our confidence in model predictions, through calibration and
verification exercises using measured data. Knowing that a model performs well in reproducing
the past gives us some level of confidence in our predictions of the future.

1-1



Section 1 e Introduction

This is particularly true if the range of future conditions do not deviate significantly from the range
contained in the calibration period. An important complication for climate change studies, however, is that
this is often not the case. For example, a 50-year historical record of climate data is unlikely to include the
extent of high temperatures, nor possibly the extreme precipitation fluctuations, predicted by the climate
models. The confidence added through calibration is therefore less compared to other types of studies.

Addressing uncertainty is a critical component to any climate change study. A recently published U.S.
Environmental Protection Agency (EPA) handbook (CDM Smith 2011) suggests two general approaches for
quantifying uncertainty in climate change impact studies: scenario planning and probabilistic methods.
Scenario planning involves multiple model applications using discrete climate change scenarios, preferably
spanning a range of climate forecasts (e.g.,, Xu et al. 2011; Cullis et al. 2011). Probabilistic methods involve
fitting probability distributions to uncertain climate variables, likely using a large range of climate model
projections. Generally some type of random sampling of these input distributions would be applied to
generate probabilistic output (e.g., Manning et al. 2009; Ghosh and Mujumdar 2007; Wilby and Harris
2006). It should be noted that, since model predictions rather than observations are used, these types of
output represent levels of consensus among the sampled models rather than true probabilities of
occurrence. However, measures of model consensus are useful for assessing relative uncertainty levels.
Although difficult to confirm, we presume that greater agreement among models is indicative of lower
uncertainty in the predictions. With either probabilistic methods or scenario planning, final results are
presented as a range of values, reflecting analysis uncertainty rather than a single deterministic value.

As part of either scenario planning or probabilistic methods, "ensembling" of climate projections is a
popular approach for addressing uncertainties in GCM projections (Reclamation 2010; Manning et al.
2009). Ensembling involves the combining of GCM data sets into a single set that reflects the predictions of
multiple GCMs. The ensemble data set is then used in subsequent analyses. There appears to be consensus
in the literature that selecting a single "best" climate projection is challenging, if not impossible.
Consequently, the use of multiple climate model projections in planning studies is recommended over
relying on a single projection.

Reclamation (2010) previously investigated uncertainty associated with three combinations of ensemble-
hydrologic modeling approaches: delta method, hybrid-delta method, and ensemble hybrid-delta method.
This Oklahoma-specific study quantified significant differences in projections of both runoff and ET across
the three methods.

1.2 Hydrologic Models

A variety of hydrologic models, with a range of complexity and sophistication, have been applied in the
literature for translating climate change projections into flow projections. These include mechanistic
models, where the key physical processes are explicitly represented in the model (e.g., Gosling et al. 2011;
Traynham et al. 2011; Minville et al. 2008) and empirical models where the processes are implicit in the
model (e.g., Nilsson et al. 2008; Stewart et al. 2004; Duell 1994). These also include both macro-scale
models without site-specific calibration (e.g., Maurer et al. 2010; Maurer 2007) and models that are locally
calibrated and applied (e.g., Yates et al. 2009; Groves et al. 2008). The studies of Gosling et al. (2011) and
Maurer et al. (2010) assessed the importance of hydrologic model selection in climate change studies. Both
studies concluded that the uncertainty associated with hydrologic model selection is secondary compared
to climate model uncertainty with respect to predicting changes in mean annual flow. However, both
studies also showed a greater sensitivity to the selection of hydrologic models when the models are used
for simulating low flows. Presumably, this result is particularly significant for studies focused on water
supply gaps or firm yields where low flows are critical.

DM
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Section 1 e Introduction

A 2011 study for the State of Oklahoma (AMEC 2011) quantified streamflow sensitivity to climate change at
a statewide scale. This study used the Reclamation "hybrid delta ensemble" method (Reclamation 2010) to
modify historical flow records based on projections of future changes in runoff using a suite of GCM
projections and a macro-scale hydrologic model. The hydrologic model was essentially uncalibrated at a
local scale. Results of this study indicate potential changes in annual streamflow ranging from 60 percent to
140 percent of historical levels, depending on location and choice of ensembled GCM output, for a 2060
planning horizon. For the Foss Reservoir watershed, this study quantified changes in annual streamflow of
-32 percent, -9 percent, and +18 percent for the worst case, central tendency, and best case ensemble
scenarios, respectively. For the Lugert Altus Reservoir watershed, changes of -34 percent, -13 percent, and
+15 percent were quantified for the three scenarios.

1.3 Firm Yield

The analysis described above was used in combination with projected changes in water demand to support
forecasts of potential water supply gaps across Oklahoma. At a local level, reservoir firm yield calculations
often feature in planning studies as a means of quantifying future dependable supply availability. Firm yield
is typically defined as the maximum annual demand that can be fully met with reservoir withdrawals
throughout the period of analysis, including critical drought conditions. For water providers dependent on
stored surface water, firm yield is a critical component of their planning. It is a calculated, rather than
measured, value and is dependent on anticipated available source water flow, the storage capacity of the
reservoir, reservoir evaporation and other losses, direct precipitation, reservoir operational constraints (if
applicable), and the seasonal pattern of water demands placed on the reservoir. Firm yield is sensitive to
climate variability indirectly through both the pattern and magnitude of reservoir inflows and net
evaporative losses.

1.4 Study Goals

The primary goal of the study presented here was to demonstrate and compare practical methods for
incorporating climate change into water resources planning studies. While the focus of this particular study
is on reservoir firm yield projections, the methods and tools are equally relevant for any water resources
planning study that relies on surface hydrology data at a monthly timescale. Investigating uncertainty in
both climate and hydrologic modeling projections was also key to the study. Specifically, through case study
applications, we aimed to:

= Compare methods for addressing climate model uncertainty through ensembling and climate data
processing techniques;

= Compare hydrologic modeling options ranging in complexity from low to moderate;

= Assess sensitivities to assumed greenhouse gas emission scenarios through inclusion of two differing
emission pathway scenarios (A2 and B1);

= Demonstrate two new tools, developed as part of this study, designed to provide for automated climate
data processing and enhanced reservoir firm yield analysis with allowance for climate change; and

= Quantify locally-relevant stream flow and reservoir firm yield sensitivities to climate change projections,
by presenting ranges of final output, for two case study reservoirs in western Oklahoma and a 2060
projection horizon.

DM
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Section 2
Case Study Site Locations

h

Foss and Lugert-Altus Reservoirs in western Oklahoma were selected as case study sites for this
study (Figure 1). Key features of each are summarized in Table 1. Both sites were appealing due
to their availability of required data (Table 1 and Table 2), including existing Reclamation firm
yield studies, and the lack of major upstream storage or point diversions. The difference in
primary water use (municipal and industrial [M&I] vs. agricultural) results in different seasonal
reservoir demand patterns, a key feature of firm yield studies. This makes for an interesting
comparative analysis. In short, the two basins satisfied certain minimum criteria, were similar
enough (e.g., geographic location, upstream water use) to provide for a level of duplication and
confirmation of methods, while still different in catchment size and seasonal demand patterns to
provide for a comparative analysis.

Water users in the Foss Reservoir catchment rely on a combination of surface water and alluvial
groundwater to meet roughly 40 percent of existing demands, with the remainder met with deep
(bedrock) groundwater. Water demands in the basin are projected to increase by approximately
40 percent by 2060. The majority of this increased demand is projected to come from the oil and
gas sector. For the Lugert-Altus Reservoir catchment, the vast majority of current demands are
met through surface water and alluvial groundwater supplies. These demands are projected to
increase to approximately 70 percent by 2060, with frequent future shortfalls projected based on
existing supplies. For more information on both basins, the reader is referred to the recently
completed update to the Oklahoma Comprehensive Water Plan (OCWP) (CDM Smith 2011b).
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Figure 1: Case Study Catchments

Table 1: Summary Case Study Reservoirs

Primary Reservoir Existing
Conservation Reservoir Surface Area Published
Catchment Catchment Pool Capacity Water At Capacity Firm Yield
Reservoir Size (Miz) Land Cover (AF) Supply Use (Acre) (AFY)1
Foss 1,500 63% grassland; 177,000 M&I 9,000 18,000
24% scrub;
8% crop;
2% developed
Lugert- 2,800 55% grassland; 111,000 agriculture 6,000 47,000
Altus 21% scrub;
17% crop;
3% developed
' CDM Smith 2011b
Mi? square miles
AF acre-feet
AFY acre-feet per year
Table 2: Summary of Upstream Flow Gages
Drainage Area Mean Annual Flow
Gage Description (Mi?) Period Of Record (AFY)
USGS 7324200 (Foss) Washita River near Hammon 1,400 1969 — present 47,000
USGS 7301500 N. Fork Red River near Carter 2,300 1944 - present 90,000

(Lugert-Altus)
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Section 3
Methods

The methodology followed in this study is used specifically for firm yield calculations (Figure 2),
but is generally transferable to other types of water supply studies where climate change is
incorporated. The methodology generally follows: 1) processing and ensembling downscaled
climate projections; 2) hydrologic modeling; 3) evaporation analysis; and 4) firm yield modeling.
Each step is detailed below. For this work, a 2060 planning horizon was selected, consistent with
the recent update to the OCWP (CDM Smith 2011b).

For each catchment and each emission scenario:

(data source = http://gdo-dcp.uclinl.org /downscaled cmip3 projections)

Site-specific

Macro-scale gridded
downscaled GCM -

runoff projections
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s > : Summarize &
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Figure 2: Methods Overview
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Section 3 e Methods

3.1 Climate Data Processing

Six sets of downscaled GCM projections, developed by six different global research institutes, were used in
this study for each of two greenhouse gas emission scenarios (Table 3). The data were downloaded from
the Reclamation website (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections), described in Maurer
etal. (2007). Emission scenarios included in this study correspond to the A2 and B1 scenarios of the I[IPCC
Special Report on Emission Scenarios (SRES). These scenarios are described, respectively, as: "A2
(~"higher" emissions path) technological change and economic growth more fragmented, slower, higher
population growth; and "B1 (~"lower" emissions path) rapid change in economic structures toward service
and information, with emphasis on clean, sustainable technology. Reduced material intensity and improved
social equity." Data were obtained for all cells included in the overlap of the 1/8° grid and the reservoir
catchments (Figure 1).

Table 3: Summary of Selected GCMs

GCMs Green House Emission Scenarios
Bjerknes Centre for Climate Research's Model (bccr_bcm2_0.1)
Meteorological Research Institute, Japan (mri_cgcm2_3 2a.1)
Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, USA
(gfdl_cm® 0.1)
CSIRO Atmospheric Research, Australia (csiro_mk3_0.1)
National Center for Atmospheric Research, Community Climate System Model,
USA (ncar_ccsm3_0.1)
Max Planck Institute for Meteorology, Germany (mpi_echam5.1)

SRES Scenarios A2, B1

The GCMs were selected based on a previous analysis for Oklahoma (AMEC 2011), which ordered each of
the 112 available GCM projections into one of four quartiles representing: hot/dry, hot/wet, warm/dry, and
warm/wet conditions, respectively. This ordering was based on statewide annual average deviations in
2060 temperature and precipitation projections compared to baseline historical means. Additionally, an
overlapping inner-quartile range was defined, representing a central tendency subset. For our study, a
single GCM projection from each of the four quartiles developed for the A2 scenario, and two from the
central tendency set, were selected to provide a reasonable representation of the range of GCM projections
available (Table 3).

In addition to the model projections of future climate described above, a set of historical observed
temperature and precipitation data, for the period 1950 - 1999, were downloaded from the source cited
above. These data have been projected onto the same 1/8° grid as the climate model projections, using
historical weather station data. Maurer et al. (2007) provides details on the techniques used to generate
this data set.

A new tool was developed under this study designed to facilitate the processing of downscaled GCM
projection data. The Climate Data Processor (CDP) is a Microsoft Excel-based tool with customized Visual
Basic code. The CDP provides automated graphical and tabular summaries of large volumes of projection
data to allow for easy comparisons of model projections and visualization of forecast climate trends. It also
provides multiple automated options for data ensembling. The CDP was first used to calculate area-
weighted mean monthly timeseries for each of the 12 selected projections. Weightings were based on the
percent overlap of grid and catchment area, for the two catchments respectively, as calculated in
geographic information system (GIS). Secondly, the CDP was used to generate graphical and tabular
summaries of the selected climate data relevant to the 2060 planning horizon. For this task, and for use in
all others described below, a sampling band of 10 years around the planning target was applied (i.e., 2060 +
10 years).

DM
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Section 3 e Methods

Lastly, the CDP was used to generate multiple ensemble climate projection data sets, corresponding to the
2060 planning horizon, for each of the two emission scenarios. These ensembles were developed from the
pooled data of the six selected representative GCMs described above. Five ensembles, for each emission
scenario, were developed using random, or stochastic, sampling of the monthly pooled data sets. As above,
a 2050 - 2070 sampling band was used for this exercise. For each, a synthetic 50-year timeseries was
developed by randomly sampling, with substitution, from the monthly pools of data. Month-to-month
correlations in either temperature or precipitation projections were incorporated, where identified, into
the random sampling using code based on the CORAND add-in to Excel (part of SimTools.xla, Myerson
2005). The sixth ensemble data set, for each emission scenario, was developed using the Reclamation
"hybrid delta ensemble” (HDe) method. In this method, statistical adjustments are made to the historical
observed data set based on relative changes predicted by the pooled GCM projections. In this way, this
method preserves the month-to-month pattern of variability observed in this historical record in its
forecast of future conditions. The reader is referred to Reclamation (2010) for details of this method.

It should be noted that the uncertainty directly attributable to GCM selection is only partially evaluated in
this study. We use subsets of the total projection pools, representative of the full range of projection values,
to primarily explore uncertainties associated with subsequent analysis steps (e.g., ensembling and
hydrologic modeling). The selected subsets do allow for a partial assessment of the range of available
climate projections, as presented in Section 4. However, a more rigorous evaluation would explicitly
include all 112 available projections to quantify uncertainty. This level of analysis was beyond the scope of
this project.

3.2 Hydrologic Modeling

Hydrologic modeling is required to translate climate projections into stream flow projections for use within
water supply planning models. It is important that any hydrologic model applied is able to adequately
capture stream flow sensitivities to climate perturbations. This is usually achieved, and/or verified,
through model calibration or "bias correction” methods. In many cases, upstream water development,
including diversions, return flows, and storage, confounds the natural hydrologic relationships in a
catchment. For the two catchments included in this study, a lack of significant upstream storage or major
urban centers make this less of a concern. Any existing upstream water development is implicitly captured
in the hydrologic modeling described below. For example, in the WEAP modeling (described below),
historical upstream diversions are captured in the calibrated ET rates. For the macro-scale Variable
Infiltration Capacity (VIC) modeling (below), upstream diversion and consumptive use are captured
through the use of empirical bias correction regression equations (described below). No attempts were
made to develop naturalized flow regimes for use in this study. Further, since our focus is on firm yield
sensitivity to climate change specifically, potential future changes in upstream water use, or land use, are
not considered.

In order to investigate the sensitivity of final study output to choice of hydrologic model, four hydrologic
modeling approaches were applied. These can be generally described as: 1) catchment-scale mechanistic
with calibration; 2) empirical regression; 3) delta method using models from numbers 1 and 2 (as part of
overall HDe methodology); and 4) macro-scale with bias correction. Details for each are provided below.

3.2.1 Catchment-Scale Mechanistic Model

The WEAP model (Stockholm Environmental Institute; www.weap21.org) was used to construct a lumped
representation of the catchments draining to Foss and Lugert-Altus Reservoirs. The constructed models
consisted of a single catchment cell with two vertical subsurface layers. The model is considered
"mechanistic" due to its explicit representation of key catchment hydrologic processes. The catchment cell
drains vertically to a groundwater aquifer object, representing bedrock groundwater, and laterally to the
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Section 3 e Methods

stream network. Monthly stream flows are calculated using the model's "soil moisture method," in which
net precipitation infiltrates to an upper shallow zone, accumulates as snow pack, or flows laterally as direct
runoff. Water is stored in both vertical layers, with downward infiltration from the top layer to the bottom
layer as parameterized by a vertical conductivity coefficient. ET losses are from the top layer only and
calculated in the model as a function of vegetation-specific potential ET parameters and storage level in the
top layer. Water leaves the two subsurface layers, contributing to stream baseflow, as a function of storage
levels and lateral conductivity coefficients.

WEAP models for Foss and Lugert-Altus Reservoir catchments were calibrated based on 50-year (1950 -
1999) records of measured stream flows from the USGS gages listed in Table 2 and shown in Figure 1. For
gage 07324200 (Washita), USGS records were supplemented with estimated reservoir inflow calculations
and local stream gaging records for the period prior to 1969. Climate input data for the calibration period
were taken from the gridded historical set described above, averaged over the catchment areas. Model
calibration focused on selected key input parameters: snow melt and freeze temperatures (Tmeic and Tireeze),
vertical and horizontal subsurface hydraulic conductivities, subsurface storage capacities, and surface PET
coefficients. The calibration relied on manual trial and error of parameter values, within realistic ranges, to
minimize the total root mean squared error (RMSE) between measured and modeled monthly flows. An
accurate flow balance was also targeted as part of the calibration process (i.e., matching total flow and
achieving realistic distributions of stream flow vs. ET losses vs. groundwater infiltration). Stationarity is
assumed for the historical data such that a single set of model internal parameters are used to simulate the
full historical period (only climate inputs vary). The calibrated models were then used to simulate 2060
hydrologic conditions using the various sets of 2060 climate data described in Section 3.1. Again, this
assumes stationarity for all but the climate parameters.

As a model verification exercise, a split sample cross-validation was performed using the calibrated Lugert-
Altus model and a 12-year period preceding the calibration period: 1938 - 1949. Gaged flow data for this
period were available to test the model's effectiveness at simulating flows outside of the calibration period.
Climate data for this period were obtained from the Elk City weather station (Figure 1). Linear regression
models (not shown), developed using the gridded historical climate data set, were used to translate Elk City
climate (grid cell 164, Figure 1) to catchment average climate. Model parameters were maintained at
calibrated values. Adequate gaged flow data were not available for the Foss catchment and therefore a
similar exercise could not be performed for the Foss catchment models.

3.2.2 Empirical Regression Models

As a second hydrologic modeling approach, statistically significant (P < 0.1) empirical regression models
were developed for each catchment that describe the relationship between monthly stream flow and
climate variables (P and T) using simple fitted equations. Models were developed for each calendar month
using gridded historical climate data (1950 - 1999) and observed monthly flow data. Regression analyses
were performed within Microsoft Excel. This analysis involved ordered iterative changes to climate
predictor variables, starting with 1-month and increasing to 12-month cumulative values, until we were
satisfied that the optimal set (highest coefficient of determination [R%]) had been found.

As above, a split sample cross-validation exercise was performed using the empirical regression models
and the 1938 - 1949 data record. The methods were the same as described above. Also as above, the
assumption of parameter stationarity is key to this approach.
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3.2.3 Delta Method

In the third approach, both sets of models described above were applied within the HDe methodology (see
Reclamation 2010). The models were applied using the 2060 HDe climate projections. As described in
Section 3.1, these climate projections were developed by adjusting the 1950 - 1999 historical record to
reflect ensemble forecasts of the 2060 planning horizon. In keeping with this approach, the 50-year flow
record, corresponding to the same period, was adjusted based on the difference between flows modeled
using the 2060 HDe climate projections and the flows modeled using the historical observed climate data
set. This can be written as:

Q5060 = Qbps + AQ" (1)
AQt = QIL:IDe - Qltnase (2)

where Q%060 = final adjusted monthly flow record reflecting 2060 climate conditions, Q% = historical
observed flow record (1950 - 1999), Qtupe = modeled flows using 2060 HDe climate projections, Qtpase =
modeled historical flows (1950 - 1999), and t = monthly index for the 50-year period.

3.2.4 Macro-Scale with Bias Correction

Reclamation recently published a new data set of climate change hydrologic projections. These projections
cover the period 2000 - 2100 and were generated using the full suite of downscaled GCM output available
from the Reclamation website and a macro-scale hydrologic model ("Variable Infiltration Capacity" or "VIC"
model). Hydrologic model output, including monthly surface runoff values, are available for the western
United States and are projected onto the same 1/8° grid as the downscaled climate data. We term the
surface runoff output "gridded runoff” for the purposes of this paper. The VIC model is not locally
calibrated, nor does it include groundwater interactions. Further details of the model and parameterization
of the model are provided elsewhere (Reclamation 2011).

A goal of this study was to investigate the use of this new data set within a catchment scale planning study.
Therefore, as a fourth hydrologic modeling option, gridded runoff projections were used to simulate stream
flow in our case study basins. The modeled historical period (1950 - 1999) was used to assess the validity
of directly using the gridded runoff data set in stream flow simulations. As a first option, simple routing of
the gridded runoff was applied. In this approach, all grid cell runoff values contained in the respective
catchments were summed, with appropriate weightings applied for partial grid cells. It was immediately
clear that this approach, while generally capturing the pattern of variability in the monthly flows, grossly
overestimated the magnitudes of the flows (Figure 3). It was therefore deemed an invalid option for our
purposes. Instead, the identified bias was addressed by developing simple monthly regression models
describing the relationship between measured stream flow and modeled gridded runoff. These models,
analogous to the empirical regression models described above, were developed using the 1950 - 1999
historical record of gaged flow data and catchment-averaged gridded runoff projections for the same
period.
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Figure 3: Gridded Runoff Projections with Simple Routing: 1950 — 1999

The gridded runoff regression models were used to simulate future stream flows given 2060 climate
projections. The same set of GCM projections described above (Table 3) was used for this application.
However, rather than developing a mixed sub-set of climate projection data sampled from pooled set of
GCMs, all of the gridded runoff projections, for the period 2050 - 2070, from the different models were
spliced together sequentially. In other words, for each emission scenario, the ensemble set of runoff
projections consists of a 6 x 21 year (126 years total) timeseries of monthly flows. This approach was taken
in recognition of the fact that there is a timeseries dependency in the VIC simulations due to sub-surface
storage in the system. Mixing and matching of monthly output between model simulations is therefore not
appropriate.

Note that for both the simple aggregation routing and the regression bias correction methods described
above, flow time lags are ignored. This is only likely appropriate for monthly (or larger) timestep
simulations of isolated catchments on par with the catchment sizes simulated here. The approach becomes
less valid for larger catchments or for smaller time scales, where flow travel times become important. For
larger catchments and/or smaller timesteps, more sophisticated flow routing techniques may be required
(as in Reclamation 2011). Also note that bias correction of the VIC gridded runoff data set would be less
important for analyses of larger basins (Reclamation 2011). The VIC model applied in the Reclamation
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(2011) study was calibrated on a large spatial scale and differences in catchment hydrologic parameters
are likely smoothed out as scales are increased.

The regression-based bias correction method presented here is new and differs from the approach
presented in the 2011 Reclamation study. The Reclamation method involves "quantile mapping" whereby
projected monthly values are adjusted based on the value's relative percentile within the full range of
projection values for that given month. The percentile value is used to identify an adjustment factor
calculated using the measured vs. modeled "overlap period" data set (1950 - 1999). Seemingly, a potential
weakness in this approach is its handling of projected flow rates that fall outside of the range simulated for
the overlap period. In this situation, the adjustment factor associated with the maximum (or minimum)
percentiles of the overlap period is used. This amounts to linear extrapolation using only the maximum
percentile points. The monthly regression approach featured in this study is presented as a potential, and
likely simpler and more transparent, alternative to the quantile mapping technique. It also appears to
better handle extreme events (flows outside of the historical overlap period) by using a regression curve,
not constrained to linear, fitted to the full range of historical data. However, an in-depth comparison of the
two bias correction techniques is outside the scope of this study.

3.3 Evaporation Analysis

To allow for the simulation of future changes in reservoir evaporation rate due to climate change,
relationships between evaporation rates and mean monthly temperature were quantified. Empirical
regression models were developed for each reservoir using historical measured pan evaporation and
temperature data. A single model was developed for each reservoir describing the relationship between
reservoir surface evaporation and monthly temperature at the reservoir. A pan coefficient of 0.7 was
applied to measured pan evaporation rates to convert to reservoir surface rates. To facilitate use of the
catchment averaged climate data described above, relationships between reservoir-specific climate (air
temperature and precipitation) and catchment average values were also quantified with linear regression
equations based on historical data. The developed evaporation models were then used in conjunction with
the 2060 climate projections to project a monthly timeseries of reservoir evaporation rates corresponding
to each of the ensemble climate projections described above. These gross evaporation rates were converted
to net evaporation, for use in the firm yield models, by subtracting out monthly precipitation values. Net
monthly evaporation rates (in mo-!) are converted to total evaporation losses (AFM) within the Reservoir
Yield Model (described below) by multiplying by reservoir surface area. Surface areas are estimated within
the model based on calculated reservoir storage volumes and user-defined area-volume tables.

As with hydrologic modeling, multiple published options exist for physically-based mechanistic modeling of
evaporation. However, the approach presented here represents an appealing practical option for isolating
the relationship between evaporation rates and climate on a site-specific basis.

3.4 Firm Yield Modeling

CDM Smith's Reservoir Yield Model was used to calculate firm yields for the suite of hydrologic projections.
The Reservoir Yield Model is a generalized water allocation model, housed in Microsoft Excel, which
includes an automated firm yield calculator. The firm yield calculations are performed in the model through
iterative increases in annual demand until the reservoir available conservation pool is emptied at some
point in the period of simulation. The model can accommodate multiple alternative inflow hydrologic data
sets. Output can be provided as probabilistic plots of calculated firm yield values, displaying the range of
calculated values and levels of consensus among the different data sets. The model was verified against
other similar tools, including Reclamation's Reservoir Operations Model, in a separate study for the State of
Oklahoma (CDM Smith 2009).

DM
Phith 37




Section 3 e Methods

Monthly demand patterns were assumed based on previous Reclamation firm yield analyses for the two
reservoirs. These monthly distributions of annual demand assume predominant M&I usage for Foss and
agricultural usage for Lugert Altus (Table 4). Net evaporation rates for each simulated scenario were
calculated externally (Section 3.3) and input to the model as a monthly timeseries.

Table 4: Monthly Demand Distributions (%) Assumed in Firm Yield Modeling

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Foss 4 4 4 6 10 13 16 15 12 8 4 4
Lugert- 0 0 0 0 4 6 415 415 7 0 0 0

Altus

The model was applied to each of the alternative monthly inflow data sets, for each emission scenario and
each catchment, consisting of: 5 x 50 years of WEAP output, 5 x 50 years of empirical regression output,

1 x 50 years of HDe WEAP output, 1 x 50 years of HDe empirical regression output, and 1 x 126 years of
gridded runoff with bias correction output.
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Section 4
Results

4.1 Climate Projections

Catchment-averaged annual T projections show an increase of approximately 4 and 2 degrees
Celsius (°C) through 2099 for the A2 and B1 emission scenarios, respectively (Figures 4a and
6a). For the 2060 planning horizon (highlighted on annual timeseries plots), median annual Ts
are projected to increase by approximately 3 (1) and 2 (+1) °C, for the two emission scenarios,
respectively (Figures 4c and 6c). Seasonal patterns of T are not projected to change (Figures 4b
and 6b). Worst-case projections show an increase in mean July T of up to 5°C (A2 scenario, GFDL
cm?2 model).

P projections display a broader band of uncertainty and lack clearly defined temporal trends
(Figures 5a and 7a). Projections for the A2 emissions scenario generally show greater
variability in annual P, with more extreme high and low annual P for the 2060 planning horizon,
compared to the B1 scenario (Figures 5c and 7c). Seasonal patterns of P are not projected to
change under either emission scenario (Figures 5b and 7b).

A comparison of ensemble data sets is presented in Figure 8 for the Foss Reservoir catchment
and the A2 emissions scenario. The results for the B1 scenario and the Lugert-Altus catchment
are similar but not shown. Shown in this figure, for each emission scenario, are the five iterations
of the stochastic ensembling method, the HDe method, and the full pool of climate model
projection data. The latter was used by Reclamation (Reclamation 2011) to generate the gridded
runoff data set used here (spliced together across the selected GCMs). Each of these data sets
serve as inputs to the hydrologic and evaporation models described below. While preserving the
general statistics of the pooled projections, the different ensembling techniques produce notably
different results. This is particularly true for the precipitation ensembles. Variability in annual
precipitation percentiles, across the seven ensembling methods, ranges from approximately

10 percent (middle percentiles) to 30 percent (lower and upper percentiles). In other words, the
span of annual precipitation values at the low and high percentiles represent up to an
approximately 30 percent difference ((max - min)/min). For example, at the 20 percentile level,
we observe a range of approximately 100 mm (500 - 400), a 25 percent difference between the
two extremes. Variability in annual mean temperature percentiles is less, ranging from 5 -

6 percent (+1°C) at the lower and upper percentiles down to < 1 percent (0.1°C) at the middle
percentiles.
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Figure 4: Foss Catchment 2060 Temperature Projections
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Figure 8: Comparison of Climate Data Ensembling, Foss Reservoir Catchment

As expected, the greatest range of P and T forecasts are seen in the full pool data set used in the gridded
runoff splicing approach. Less expected is the result that the HDe method also produces a large range of P
and T forecasts compared to the stochastic sampling iterations. This approach generates climate
projections that are bound to the historical observed data set with respect to relative monthly sequencing.
However, the projections are unbounded, by either observed data or GCM projections, with respect to
monthly magnitudes of climate data. Results for this application show that the HDe method preserves the
range of magnitudes of GCM data on an annual basis (Figure 8a) but extends beyond the range of GCM
source data on a monthly basis (Figure 8b).

4.2 Hydrologic Model Parameterization

The WEAP hydrologic model was calibrated using Washita River (Foss catchment) historical data and
verified, with only minor parameter adjustments, using the Lugert-Altus catchment model and historical N.
Fork Red River data (Table 5). Annual water balances using the WEAP output indicate that ET losses
account for c. 95 percent of the total precipitation falling on the two catchments. Modeled ET rates (c. 23 in
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yr-1) and recharge rates (c. 13,000 - 31,000 AFY) agree well with independent estimates for the region
(Vieux et al. 2009; OWRB 2011).

Table 5: WEAP Model Parameterization

Foss Lugert-Altus

Kc (unitless)* 05-1.5 0.5-1.5
Soil water capacity (mm)® 170 170
Deep water capacity (mm)® 1000 1000
Runoff resistance factor (unitless)” 5.5 3.3
Root zone conductivity (mm mo™)° 20 20
Deep conductivity (mm mo™)® 10 10
Preferred flow direction (unitless)7 0.7 0.7

Reference crop coefficient factor applied to default reference crop coefficients for ET simulation

Depth of shallow sub-surface layer

Depth of deep sub-surface layer

Used to control surface runoff response, runoff decreases with higher values (range = 0.1 - 10)

Shallow sub-surface layer conductivity at full saturation, partitioned between vertical and horizontal flow based on
preferred flow direction

Deep sub-surface layer conductivity in horizontal direction

Partitioning factor for shallow subsurface flow (1 = 100% horizontal, 2 = 100% vertical)

[ T N I

Statistically significant (P < 0.1) regression models were achieved for each calendar month using both
observed climate data (Table 6) and gridded runoff (Table 7) output to predict historical stream flows. For
the climate data regressions, variance in winter stream flow is best predicted by long-term (8 - 12 month)
cumulative P, while stream flow during the rest of the year is best predicted by shorter term (1 - 4 month)
P. This points toward the dominance of baseflow during the winter and a larger contribution from direct
surface runoff during the spring and summer. The inclusion of T in the regression models was shown to
improve model predictive power for the summer months only - likely reflecting the importance of ET
during this time of the year. R2 were generally lower for the summer months compared to the rest of the
year. This indicates slightly weaker models for these months, likely attributable to the multi-variate
complexities associated with predicting flows during these months. Included here may be the influence of
agricultural practices during the summer months, particularly in the Lugert-Altus catchment.

Table 6: Empirical Regression Models

v =Ef?::’t(|Z:M) x1 (mm) x2 (°C) R’ p
Foss:
Jan y = 0.06x1° - 57.1x1 + 14,140 12 mo P* 0.71 <0.01
Feb y= 0.04x1% - 38.0x1 + 9036 11 moP 0.65 <0.01
Mar y = 0.09x1° - 85.4x1 + 21,971 12 mo P 0.79 <0.01
Apr y=0.17x1% + 13.1x1 - 279 4 mo P 0.48 <0.01
May y =133.8x1-11,077 2mo P 0.62 <0.01
Jun y =50.3*x1 - 1834.4*x2 + 31,946 3moP 3moT 0.50 <0.01
Jul y =51.0%x1-519.6*x2 + 14,233 1moP ImoT 0.49 <0.01
Aug y=0.11x1> +5.3x1 - 335 2moP 0.56 <0.01
Sep y= 0.11x1%- 24.8x1 + 1778 3moP 0.60 <0.01
Oct y= 0.26x1% — 66.0x1 + 4545 3moP 0.60 <0.01
Nov y= 0.13x1% - 36.5x1 + 2966 4 mo P 0.76 <0.01
Dec y= 0.05x1% - 43.8x1 + 9575 9mo P 0.65 <0.01
Lugert-Altus:
Jan y= 0.06x1% - 35.8x1 + 6492 10 mo P 0.63 <0.01
Feb y= 0.04x1%- 21.1x1 + 3252 11moP 0.69 <0.01
Mar y= 0.08x1% + 7.0x1 — 2064 8 mo P 0.68 <0.01
CDM 4.7

Smith




Section 4 e Results

Table 6: Empirical Regression Models

Equation

y = flow (AFM)
Apr y = 0.93x1% - 106.6x1 + 7016
May y =0.59x1° + 143.1x1 — 11,880
Jun y = 146.5%x1 - 2719.5x2 + 57,055
Jul y = 116.8*x1 - 1261.7*x2 + 31,076
Aug y = 0.40x1% - 127.4x1 + 9829
Sep y =0.24x1” - 41.9x1 + 1786
Oct y = 0.87x1% - 220.3x1 + 13,264
Nov y=0.13x17- 11.7x1 - 42
Dec y = 0.06x1” - 41.0x1 + 7239

x1 (mm)

3moP
2moP
2moP
1moP
3moP
3moP
3moP
4moP
9mo P

x2 (°C)

ImoT
ImoT

cumulative total precipitation for the 12 months preceding and including January

3 month average temperature (April - June)

Table 7: Gridded Runoff Regression Models

Equation
y = flow (AFM); x = 1 month gridded runoff (mm)
Foss:
Jan y =671.5x — 999
Feb y = 4142.7In(x) - 3318
Mar y =699.0x — 755
Apr y = 7754.4In(x) - 8009
May y =15,997In(x) - 21898
Jun y =938.3x - 297
Jul y =1042.6x — 2620
Aug y =6221.4In(x) - 6914
Sep y =757.3x—2028
Oct y =471.0x - 415
Nov y =449.3x—-377
Dec y =560.1x - 790
Lugert-Altus:
Jan y =22259x - 1473
Feb y = 8889.4In(x) — 2653
Mar y =9680.8In(x) — 4311
Apr y =16,522In(x) — 10,356
May y = 31,890In(x) - 23474
Jun y = 3328.2x — 3033
Jul y =2087.4x — 3786
Aug y = 60.7x° + 1539x - 3112
Sep y =2275.3x - 3753
Oct y =1965.3x - 2622
Nov y = 7038.9In(x) — 3094
Dec y = 1508x - 307

2

0.78
0.47
0.73
0.58
0.58
0.54
0.64
0.59
0.87
0.62
0.62
0.60

0.82
0.85
0.84
0.75
0.51
0.73
0.80
0.91
0.65
0.83
0.72
0.67

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01

cumulative total precipitation for the 12 months preceding and including January

3 month average temperature (April - June)

4-8

RZ

0.83
0.68
0.50
0.52
0.57
0.57
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0.70
0.64

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
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Section 4 e Results

All three modeling approaches were able to adequately simulate historical stream flows in both
catchments, based on multiple relevant hydrologic metrics (Figures 9 - 12). Based on visual inspection, the
three modeling approaches appear to perform similarly in simulating annual flow variability (Figures 9 -
11). The regression models do a better job than WEAP at simulating mean monthly variations (Figure 12).
However, this is not surprising since the models were developed by fitting equations, on a month-by-month
basis, to the aggregate data set, based on an aggregate metric (RMSE). The WEAP model has a greater
tendency to over-predict upper percentile (high) annual flows compared to the other models (Figures 9
and 11). The Foss catchment empirical regression model does a poorer job of simulating the full range of
annual flows observed in the calibration period, compared to the other models (Figure 11b). Goodness of fit
parameters (Table 8) indicate that, overall, the simple regression models perform as well as, if not better
than, the more sophisticated mechanistic WEAP model at simulating calibration period flows. It is
noteworthy that none of the three modeling approaches are able to reproduce the measured low flow
period of the early 1970s in the Foss Reservoir catchment (Figure 9). This period of data appears to be
anomalous relative to climate conditions during this period and outside of the normal climate elasticities
captured in the hydrologic models.
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a.) WEAP
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Figure 9: Hydrologic Model Calibration Results: Annual Timeseries
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a.) WEAP
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Figure 10: Hydrologic Model Calibration Results: Cumulative Flow Volume
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a.) WEAP
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c.) Gridded Runoff with Bias Correction
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Figure 11: Hydrologic Model Calibration Results: Annual Percentiles

4-12

h




Section 4 e Results

a.) WEAP
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Figure 12: Hydrologic Model Calibration Results: Mean Monthly Flow
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Table 8: Model Calibration Statistics
2

RMSE (AFM) R
Foss WEAP 6207 0.46
Foss Empirical Regression 4071 0.64
Foss Gridded Runoff w/ Bias Correction 4082 0.68
Lugert-Altus WEAP 10,169 0.70
Lugert-Altus Empirical Regression 7564 0.73
Lugert-Altus Gridded Runoff w/ Bias Correction 8007 0.70

The split sample cross-validation exercise revealed that both the WEAP and empirical regression models
were able to adequately reproduce monthly flows outside of the calibration period (Figure 13 and
Table 9). Goodness of fit metrics (Table 9) were similar to those associated with the calibration period
(Table 8), with the empirical regression models outperforming the mechanistic WEAP model.

a.) WEAP b.) Empirical Regression
N. Fork Red River nr Carter (Lugert-Altus) N. Fork Red River nr Carter (Lugert-Altus)
300,000 300,000
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100,000 - 100,000

50,000 - 50,000

0 T T 0

1938 1940 1942 1944 1946 1948 1950 1938 1940 1942 1944 1946 1948 1950
year year

Figure 13: Hydrologic Model Verification Results: Annual Timeseries

Table 9: Model Verification Statistics
2

RMSE (AFM) R
Lugert-Altus WEAP 11,563 0.51
Lugert-Altus Empirical Regression 10,116 0.57

Note that, although not performed for this study, practitioners may want to further assess model
performance by analyzing model vs. measurement errors (residuals). Residuals should appear random and
be roughly normally distributed around a mean close to 0. To confirm the assumption of stationarity in the
historical data, temporal trends in the residuals should not exist.

4.3 Evaporation Model Parameterization

Statistically significant regression models were developed, for each reservoir, describing the relationship
between monthly reservoir gross evaporation and mean monthly air temperature (Figure 14). For both
reservoirs, mean monthly temperature was shown to be a strong predictor (R2 > 0.85) of reservoir
evaporation. A second order polynomial and an exponential function were found to best fit the measured
historical data for Foss and Lugert-Altus Reservoirs, respectively. The considerable scatter around the
regression models show in Figure 14 is likely due primarily to measurement error, as reservoir
evaporation is very difficult to measure accurately. There are other climate conditions not included in the
models that also undoubtedly play a role in the observed model uncertainty, including humidity, solar
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radiation, and wind speed. However, none of these parameters are generally available in climate change
projection data sets. For the purposes of this study, we therefore would not be adding any value to the
models by introducing additional parameters. Our simple models, which isolate the key relationship
between evaporation and mean monthly temperature, and explain over 85 percent of the variability in
historical rates, are deemed adequate for this study. Such methods are recommended for other planning
studies where more complex mechanistic evaporation models are often beyond scope and budget and
unlikely to provide greater predictive power.

300 Foss 300 Lugert-Altus

250 - 250

y = 47.2e005

200 200

150 150

100 100

evaporation rate (mm mo?)
evaporation rate (mm mo)

50

temperature ('C)

Figure 14: Evaporation Regression Models

temperature ('C)

4.4 2060 Hydrology Projections

The five ensemble climate data sets shown in Figure 8 were used to drive 2060 hydrologic projections
using the WEAP and empirical regression models. The HDe climate projections (Figure 8) were used to
calculate flow delta values using the same models. Lastly, the spliced gridded runoff projections were bias-
corrected and used to project 2060 hydrology.

In general, projected 2060 climate conditions translate to less runoff, compared to historical baseline in
both study rivers. The A2 emissions scenario is worse than the B1 scenario with respect to annual low
flows (Figures 15 and 16). Decreases in projected flow are attributable to two factors: less P and greater
proportions of that rainfall lost to ET. The latter was confirmed with analysis of WEAP output (not
specifically provided here). The A2 emissions scenario projects less rainfall on an annual basis (Figures 5
and 7), higher temperatures (Figures 4 and 6), and higher ET losses than the B1 scenario. General patterns
of flow seasonality (Figures 14a and 15a) are not projected to change significantly for any of the model
scenarios. Note that, for simplicity, the WEAP and empirical regression model results shown in these
figures correspond to values averaged across the five different stochastic ensemble data sets. Also note
that, since the ultimate focus of this study is on reservoir yield during drought conditions, and to provide
better clarity in the graphs, only the lower half of the percentiles are shown in the annual percentile plots.
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a.) Monthly Means

A2 B1
20,000 20,000
18,000 -| / ——historical observed 18,000 -|
o - =-WEAP — historical observed
16,000 - N 16,000 - -
/ \ ~ empirical regression WEAP
= 14,000 | | \ — gridded runoff = 14,000 —— empirical regression
£ / — WEAP hybrid delta 3 — gridded runoff
12,000 12,000 _ )
3 . \ ~~~~~ WEAP empirical hybrid delta 3 WEAP hybrid delta
Z 10,000 Z 10000 1 AL empirical hybrid delta
€ €
o o
€ 8,000 - € 8,000 -
c c
3 3
€ 6,000 | € 6,000 |
4,000 - 4,000 -
2,000 2,000
0 T T T T T T T T T T T 0 T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
b.) Annual Percentiles
A2 Bl
40,000 - / 40,000
35,000 | = historical observed ~<=-WEAP : 35,000
—— empirical regression = gridded runoff
30,000 —— WEAP hybrid delta -empirical hybrid delta 30,000
25,000 % 25,000
= <
% 3
< 3
—~ 20,000 < 20,000
g K
= 3
£
15,000 S 15,000
= historical observed =~ ==-WEAP
10,000 10,000
= empirical regression == gridded runoff
5,000 5,000 —— WEAP hybrid delta ~ +++- empirical hybrid delta
0 T T T T T T T T ] 0 T T T T T T 1
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.t 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
percentile | percentile
c.) Ensemble Mean Annual Percentiles
A2 Bl
40,000 - 40,000 -
35,000 - == historical observed 35,000 - == historical observed
30,000 - = =ensemble mean 7 30,000 - = =ensemble mean -
25,000 25,000
= =
T s
< 20,000 < 20,000
3 3
K] K]
15,000 15,000
10,000 10,000
5,000 - 5,000 -
0 T T T T T 1 0 T T T T T ]
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
percentile percentile
Figure 15: Foss Catchment 2060 Stream Flow Projections
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Figure 16: Lugert-Altus Catchment 2060 Stream Flow Projections
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In addition to the sensitivity to assumed greenhouse gas emissions, we see a reasonably high sensitivity to
the selected hydrologic modeling approach, with mean annual flows ranging from 32,000 to 61,000 AFY for
Foss and from 68,000 to 114,000 AFY for Lugert-Altus. The WEAP model used within the HDe approach
actually predicts a significant increase in spring (Apr - Jun) high flows on a mean monthly basis, compared
to baseline, for both catchments (Figures 14a and 15a). This is largely the result of the simulation of a few
unusually high flow months by this method that skew the mean metric. These high flow predictions occur
within the HDe method because of two factors. Firstly, the ratio method used to adjust historical
precipitation records can result in monthly precipitation values higher than any either observed or
simulated by the climate models. Secondly, since these precipitation values are outside the range of
calibration data, the WEAP model may over-estimate the stream flow response to high precipitation events.
On the other hand, the WEAP model by itself projects a decrease (c. 10 - 60 percent) in mean monthly flows
particularly during the peak flow season. These two results together indicate a threshold in the calibrated
WEAP model, likely linked to the depth of the calibrated shallow sub-surface zone. Spring precipitation
above this threshold, as in the HDe data set, results in saturation conditions and large volumes of
immediate runoff. Spring precipitation below this threshold gets largely stored and the runoff response is
dampened.

All models except the B1 empirical regression model project annual low flows for the 2060 climate
condition that are less than or equal to baseline (Figures 14b and 15b). Projected decreases in annual flows
range up to approximately 50 percent (e.g., gridded runoff A2 model). Ensemble means, averaged across all
hydrologic projections, indicate a projected decrease in annual low flows of approximately 10 - 25 percent
for the A2 scenario and both catchments (Figure 14c and 15c). For the B1 scenario, projected low flows are
approximately equal to baseline values up to approximately the 30th percentile, from which they decrease
relative to baseline to approximately 20 - 30 percent lower for the median annual flows.

Use of the newly available gridded runoff data set, with bias correction, results in annual low flow
projections that are low relative to the consensus of other hydrologic modeling approaches included in this
study. However, this appears to be more a function of the ensemble precipitation data underlying the flow
projections (Figure 8a) than of the hydrologic model itself or the bias correction method. No other
consistent trends were identified in the comparison of hydrologic model projections.

4.5 2060 Evaporation Projections

Application of the empirical regression evaporation models with the various 2060 climate projections
resulted in an increase in mean annual net evaporation of approximately 42 percent and 26 percent, for the
A2 and B1 emissions scenarios respectively, compared to historical observed rates (Table 10). These
values were averaged across all ensembled climate data sets and were approximately the same for the two
basins. Percentile plots (Figure 17) reveal consistency in the magnitudes of increases predicted by the
modeling across the range of cool to warm years.

Table 10: Mean Annual Net Evaporation Projections
Historical Mean 2060 A2 Mean 2060 B1
Net Evaporation (mm yr?) 790 1120 990
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Figure 17: Foss Reservoir 2060 Evaporation Projections

4.6 Firm Yield Modeling

Reservoir firm yield values for each of the developed hydrologic projections are summarized in Tables 11
and 12. Key hydrologic metrics are included for reference. For Foss Reservoir, the mean of the A2 set of
projections (14,800 AFY) is 17 percent lower than the historical baseline firm yield, with a standard
deviation of + 5800 AFY. The mean of the B1 set of projections (18,000 AFY) is 2 percent higher than the
historical baseline, with a standard deviation of + 5400 AFY. For Lugert-Altus Reservoir, the A2 mean
(27,100 AFY) is 34 percent lower than historical baseline, with a standard deviation of + 9700 AFY. The
Lugert-Altus B1 mean (33,300 AFY) is 19 percent lower than historical baseline.

We can isolate the variability in firm yield projections attributable to ensembling alone by considering the
range in values across the five ensembles for a given hydrologic model (WEAP or empirical). The standard
deviations of Foss WEAP projections are 19 percent and 16 percent for the A2 and B1 scenarios,
respectively. For the Foss empirical model projections, the standard deviations are 10 percent and

2 percent, respectively. For the Lugert-Altus, the WEAP standard deviations are 20 percent and 16 percent,
respectively, and the empirical model standard deviations are 11 percent and 10 percent, respectively.
Pooled together, the mean deviations attributable to ensembling are 12 percent and 14 percent for Foss
and Lugert-Altus, respectively.

Similarly, variability attributable to choice of hydrologic model can be isolated by comparing values
generated using the same climate data but different hydrologic models. Standard deviations calculated for
the multiple paired data sets (WEAP vs. empirical model using the various ensemble climate data sets)
range from 0.5 percent (A2, HDe) to 41 percent (B1, ensemble 5) for Foss Reservoir and from 5 percent
(A2, ensemble 2) to 37 percent (A2, ensemble 5). The mean deviation attributable to hydrologic model
selection, averaged across all paired data, is 18 percent for both Foss and Lugert-Altus Reservoirs.

For both reservoirs, the worst-case projections are from the A2 gridded runoff data sets, which result in
firm yields of zero. In other words, available inflows are less than evaporative losses from the conservation
pool during a projected extended drought period. This drought period comes directly from the gfdl_cm?
projection of the planning horizon period (Figures 5 and 7) and represents worst case conditions among
selected projections. In the timeseries splicing method applied to the gridded runoff data, this specific data
sets stands alone, without dilution from the less extreme projections, as the critical drought of record in the
firm yield calculations.
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Table 11: Summary of Foss Reservoir Firm Yield Calculations

Baseline (1950 - 1999)
2060 A2 WEAP 1

2060 A2 WEAP 2

2060 A2 WEAP 3

2060 A2 WEAP 4

2060 A2 WEAP 5

2060 A2 Empirical 1
2060 A2 Empirical 2
2060 A2 Empirical 3
2060 A2 Empirical 4
2060 A2 Empirical 5
2060 A2 WEAP HD
2060 A2 Empirical HD
2060 A2 Gridded Runoff
2060 B1 WEAP 1

2060 B1 WEAP 2

2060 B1 WEAP 3

2060 B1 WEAP 4

2060 B1 WEAP 5

2060 B1 Empirical 1
2060 B1 Empirical 2
2060 B1 Empirical 3
2060 B1 Empirical 4
2060 B1 Empirical 5
2060 B1 WEAP HD
2060 B1 Empirical HD
2060 B1 Gridded Runoff

4-20

Firm Yield
(AFY)

17,730
13,295
14,250
22,325
17,250
13,125
13,925
10,385
17,390
13,740
13,935
21,255
21,155
0
20,180
16,550
24,425
17,740
14,480
21,905
23,350
22,240
21,570
21,905
8,710
9,470
11,690

Mean Monthly
Evaporation
(inmo™)

2.60
3.60
3.70
3.60
3.60
3.70
3.60
3.70
3.60
3.60
3.70
3.60
3.60
3.60
3.10
3.20
3.30
3.20
3.20
3.10
3.20
3.30
3.20
3.20
3.30
3.30
3.20

Mean Annual
Flow
(AFY)

48,730
40,701
38,391
40,938
36,913
30,482
33,464
30,332
35,510
34,832
33,464
61,251
45,460
39,816
37,318
30,597
30,432
31,404
29,818
40,447
37,090
37,214
34,267
36,777
46,429
42,975
39,486

Minimum
Annual Flow
(AFY)
343
8,565
7,240
5,949
8,063
7,225
8,245
5,884
7,654
7,147
8,245
0
0
4,003
7,747
8,499
10,016
11,332
8,039
10,043
11,879
12,108
10,798
11,872
493
7
4,165

Minimum
8-Year Running
Average
(AFY)

17,047
22,599
20,479
23,666
20,782
17,701
21,947
17,364
24,539
23,498
21,947
21,056
16,001
7,091
21,291
23,323
21,537
23,582
22,629
27,063
30,455
30,763
23,890
23,423
15,475
14,479
17,350
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Table 12: Summary of Lugert-Altus Reservoir Firm Yield Calculations

Minimum
Mean Monthly Mean Annual Minimum 5-Year Running
Firm Yield Evaporation Flow Annual Flow Average
(AFY) (inmo™) (AFY) (AFY) (AFY)

Baseline (1950 - 1999) 40,895 2.70 92,709 19,617 45,986
2060 A2 WEAP 1 34,220 3.70 83,672 14,439 33,731
2060 A2 WEAP 2 31,215 3.80 66,756 12,149 32,702
2060 A2 WEAP 3 19,465 3.80 66,718 11,859 24,671
2060 A2 WEAP 4 28,280 3.80 76,036 10,172 39,842
2060 A2 WEAP 5 20,310 3.70 72,889 7,328 26,056
2060 A2 Empirical 1 37,880 3.70 74,857 13,696 45,473
2060 A2 Empirical 2 32,965 3.80 68,209 17,183 35,979
2060 A2 Empirical 3 25,615 3.80 62,924 13,243 30,923
2060 A2 Empirical 4 34,290 3.80 73,458 15,329 41,227
2060 A2 Empirical 5 29,545 3.70 72,737 13,925 34,020
2060 A2 WEAP HD 30,645 3.70 113,901 4,711 42,001
2060 A2 Empirical HD 27,530 3.70 90,059 2,255 37,364
2060 A2 Gridded Runoff 0 3.70 70,403 2,027 5,441
2060 B1 WEAP 1 40,490 3.30 81,571 13,077 40,119
2060 B1 WEAP 2 27,605 3.40 61,626 4,660 31,187
2060 B1 WEAP 3 31,520 3.40 65,227 16,239 28,185
2060 B1 WEAP 4 23,955 3.40 68,691 11,515 22,721
2060 B1 WEAP 5 36,605 3.40 63,149 10,164 40,194
2060 B1 Empirical 1 43,600 3.30 84,650 19,514 44,733
2060 B1 Empirical 2 38,425 3.40 70,060 17,812 51,104
2060 B1 Empirical 3 35,580 3.40 68,414 13,004 39,313
2060 B1 Empirical 4 31,600 3.40 71,828 18,858 33,089
2060 B1 Empirical 5 42,185 3.40 71,862 24,395 48,462
2060 B1 WEAP HD 33,780 3.30 85,509 10,444 36,573
2060 B1 Empirical HD 30,935 3.30 79,520 9,584 37,014
2060 B1 Gridded Runoff 16,850 3.30 73,991 2,630 22,996

Percentile plots (Figure 18) were developed using the data in Table 11 representing the various
combinations of climate data ensembles and hydrologic models. The percentiles can be thought of as
measures of model consensus and, as such, intended to be useful for planning decisionmaking. For example,
the Foss Reservoir output indicate an approximately 75 percent modeling consensus that the firm yield
associated with the 2060 planning horizon and A2 emissions scenario is below the firm yield estimated
using historical data (18,000 AFY). For Lugert-Altus, there is full (100 percent) consensus that the 2060
firm yield, assuming A2 emissions, is lower than the existing baseline value (41,000 AFY). For the B1
emission scenario, results are very different for Foss but similar for Lugert-Altus. For Foss, there is actually
a 60 percent consensus that the 2060 firm yield is higher than the baseline value. Clearly, in this case, the
projected changes in precipitation patterns, and resulting stream hydrologies, generally improve yield
conditions for this reservoir and outweigh the increased evaporation losses. Note, however, that even for
this scenario two of the approaches project a firm yield of approximately half of the baseline value. For
Lugert-Altus the B1 scenario projects, with approximately 85 percent consensus, that the 2060 firm yield
will be lower than baseline.
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Figure 18: Reservoir Firm Yield Modeling Results

With larger reductions in firm yield projected with a greater consensus, Lugert-Altus appears to be more
sensitive to climate change than Foss Reservoir. This is likely attributable to a combination of two factors:
1) a greater ratio of catchment area to reservoir capacity, and 2) a seasonal demand pattern more
concentrated on the summer months. With respect to the former, we surmise that a smaller reservoir will
be more sensitive to changes in drainage area precipitation, and to a lesser extent temperature, and will
have less of a buffering capacity (storage of high flows) against low flow periods. For the latter, we surmise
that demands concentrated during the summer months, rather than spread out over the year, result in
increased sensitivity to changes in summer evaporation rates and low flow conditions.

To better explain the results presented, further analyses were performed to determine the key hydrologic
drivers of firm yield in both reservoirs. This analysis revealed that the strongest predictors of firm yield,
among a suite of hydrologic metrics examined, are the 8- and 5-year running average flow values presented
in Tables 11 and 12, for the two reservoirs respectively. R values of 0.55 and 0.83, for Foss and Lugert-
Altus respectively, indicate a strong correlation between these metrics and calculated firm yield values. In
other words, the firm yields are highly sensitive to the sequencing of annual flows, with an extended
sequence of low annual flows creating the critical condition. This is evidenced by the variability of firm
yield calculations across the five different stochastic ensembles of climate projections. Each of these
represent different sequencing patterns of monthly climate data sampled from the same source pool. This
insight also explains why the calculated firm yields for the Foss Reservoir B1 HDe projections are lower
than the analogous A2 yields. The 8-year drought periods are lower for the B1 scenario than the A2
scenario, despite the fact that mean flows averaged over the period of record are higher.
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The final planning decision metric targeted in this study is reservoir firm yield. This work has
demonstrated the sensitivity of this metric to multiple steps in the process of incorporating
climate change projections into water resources planning analyses (Table 13). These estimates
of uncertainty come directly from the data and model output presented in Section 4.

Table 13: Summary of Uncertainties at Various Analysis Stages: mean deviation (max deviation)

Foss Reservoir Lugert-Altus Reservoir
Climate Model T Projections (A2)* 3% (4%) 3% (7%)
Climate Model P Projections (A2)* 8% (19%) 14% (33%)
Assumed Emission Scenario’ 20% 21%
Ensembling2 12% (39%) 14% (28%)
Hydrologic Modeling’ 18% (41%) 18% (37%)

1
based on mean annual values of selected GCMs

2 based on calculated firm yield values

We have quantified large uncertainties in climate model projections themselves, for a single
planning horizon and a single greenhouse gas emission scenario, using only a small subset of all
available GCM projections. The uncertainty values presented in the first two rows of Table 13
represent standard deviations in mean annual climate values calculated across the selection GCM
projections. A key to the overall methodology presented in this study is therefore the selection of
GCM projections for use in planning. A greater number of projections included will provide for a
more accurate quantification of inter-model uncertainty. As an alternative, given practical
project constraints, a smaller number of projections might be selected based on a quartile
mapping procedure, similar to that applied here. This ensures that the selected subset of
projections is representative of the full set of projections.

Methods for ensembling climate projections have also been shown to be critical to the process. In
this study, we've attempted to capture a range of climate change projections through the
combination of six GCMs, for two emission scenarios, strategically selected to reflect the full
range of all available GCM projections. Even with this single source pool of data, we've shown
that different ensembling applications result in significantly different decision variable values,
even when used with the same hydrologic models (* c. 13 percent, Table 13). The values
presented in Table 13 represent inter-ensemble standard deviations, as described in Section 4.6.
As above, the implication of these results is that the use of multiple climate data ensembling
techniques within a planning study, as feasible, might be needed to accurately capture the
uncertainty associated with this step. For example, the use of the HDe method by itself limits the
relative sequencing of climate and flow patterns to that observed in the historical period (1950 -
1999) and therefore may be less informative than the use of multiple stochastic ensembles.
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Uncertainty associated with choice of hydrologic models appears to be as great as, or greater than, that
associated with other steps in the process (+ 18 percent, Table 13). As described in Section 4.6, the values
presented in this table represent the means of inter-model variations averaged across all firm yield
projection pairs (WEAP vs. empirical model) corresponding to the same input climate ensemble. The HDe
and gridded runoff projections were not included in this calculation since they are forced by different
climate data, and thus the impacts of model structure alone could not be isolated. Since the focus is on low
flows here, the results presented in Table 13 do not appear to contradict the results of recent studies by
Gosling et al. (2011) and Maurer et al. (2010). Uncertainty is reduced through accurate model calibration
and parameterization using historical data and based on multiple output metrics - particularly those to
which final decision variables are most sensitive. Given the results presented here, the use of hydrologic
models that have not been calibrated or parameterized at a catchment scale is not recommended for these
types of studies. However, even with calibration, we see large uncertainties in predictions of the future
where much of the climate conditions fall outside the range observed in the calibration period. Despite this
uncertainty, there is general consensus among the models that stream flows will decrease in the future,
given either emission scenario, on a mean monthly and annual total basis. Median annual flows, averaged
across all scenarios, are projected to be approximately 15 and 25 percent lower than baseline for the two
reservoirs, respectively. This agrees well with previous OWRB estimates (AMEC 2010). However, we also
observe a seemingly significant difference between the two emission scenarios (A2 and B1) with respect to
stream flow projections. The projected ensemble means of low percentile annual flows are only slightly
lower than baseline for the B1 scenario, for both catchments, but are upwards of 25 percent lower for the
A2 scenario. This result points towards the importance of greenhouse gas mitigation now and in the future.

Hydrologic modeling of the historical period indicates that simple regression models can perform as well
as, if not better than, more sophisticated mechanistic approaches with respect to simulating flow - climate
dependencies. This is supported by results of a split sample cross-validation exercise. There are obvious
cost-saving implications here. Establishing simple regression relationships between stream flow and
climate variables, or stream flow and macro-scale gridded runoff output, requires less expertise, and likely
less time, than constructing and calibrating a catchment-level mechanistic model (e.g., WEAP). We propose
that the marginal time and cost associated with more complex hydrologic modeling might be better spent
on capturing uncertainties in the climate projections, as described above. Clearly this recommendation
assumes adequate availability of site-specific gaged flow data. If such data do not exist, generalized
mechanistic models may be more appropriate. Further, there are likely many applications where
regression models will not be sufficient. For example, studies that look to simulate basin changes beyond
just climate would likely require explicit representation of specific catchment processes (i.e., mechanistic
models). The lumped regression approach would also fall short if spatial resolution in flow simulations is
needed. More complex basins might also require more complex models. These could include basins with
snowpack driven hydrologies, more varied landscape and topography, and/or greater in-basin water use
and storage. Lastly, regression models may, arguably, be subject to greater uncertainty, compared to
mechanistic models, when extended beyond the range of the calibration data set. Ultimately, the validity of
simple vs. complex hydrologic models should be assessed on a case by case basis.

Newly available gridded runoff projections are shown to be poor predictors of stream flow by themselves,
for the study basins, and require bias correction for application at a catchment scale. Catchment runoff is
over-predicted by the VIC model. A small portion of this error is likely attributable to upstream municipal
diversions and consumption. However, based on water balances derived from the WEAP modeling, it is
likely that a majority of this error stems from underestimates of ET losses and groundwater recharge.
Recent Reclamation studies (Reclamation 2011) have shown that these projections are more accurate for
larger spatial and temporal scales. This is due to a smoothing effect as water moves through larger basins
and over longer time intervals, which tends to averages out small-scale errors.
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One option for bias correction of the gridded runoff data set has been demonstrated in this study. This
technique involves monthly regression analysis using historical stream flow data and gridded runoff
output, corresponding to the 1/8° grid cells overlying the targeted catchment, for the same overlapping
period (1950 - 1999). This option is presented as a potentially simpler and more transparent alternative to
the quantile mapping approach recommended by Reclamation (Reclamation 2011). Once applied, results
show this combination of methods to be as effective as other options at simulating historical stream flow.
Since the background hydrologic modeling has already been performed for these data sets, and the data are
publically available, use of the data in this context is an attractive option for hydrologic modeling in these
types of studies. While the performance in simulating historical flows was similar to that of the simple
empirical regression option (which use climate data directly), the regression relationships established for
the gridded runoff data are simpler and presumably easier to develop.

One drawback of the gridded runoff datasets is that they do not readily lend themselves to ensembling, as
discussed in Section 3.2. For the purposes of firm yield calculations, the timeseries splicing technique
applied here is effectively the same as a discrete scenario approach. For this study, the gfdl_cm2 projections
are the limiting dataset in the spliced timeseries. Consequently, calculated firm yields using this method are
much lower than those generated with the ensemble projections and reflect a worst case scenario rather
than a blended range of projections. It should be noted that the most rigorous option, with respect to
capturing GCM projection uncertainty, would be to analyze all 112 runoff projections currently available on
the Reclamation website (cited previously) as discrete scenarios. Output could then be "ensembled" as a
post-processing step to better inform decision making. However, this approach is highly data intensive and
may not be practical given project constraints.

The HDe method preserves relative sequencing of monthly climate data observed in recent history. It does
not, however, impose bounds on the magnitudes of monthly climate or flow data to ensure that they remain
within those projected by the ensemble climate models. While the preservation of historical monthly
sequencing is potentially more palatable to the public compared to synthetic sequencing, it can also be
more limiting, as discussed above. Since it is so closely coupled to measured data, the method is also
particularly vulnerable to problems that may exist in historical observed data sets. The driver of the Foss
Reservoir firm yield calculations using the HDe method is the low flow period of the early 1970s. The
adjustments made to this period of flow, reflective of 2060 climate change conditions, result in even lower
flows for this period. However, as noted in Section 4.2, this subset of measured data appears anomalous.
Calibrated hydrologic models are not able to reproduce these low flow values and the flows seemingly
cannot be accounted for by climate variability alone. This may indicate measurement error or it may
indicate an unusual and temporary change in upstream water use patterns. Further investigation is beyond
the scope of this study. Regardless of the cause, it brings into question the firm yield values projected for
Foss Reservoir using the HDe method. It also highlights an area of caution when applying the HDe method.

Reservoir firm yield has been shown to be sensitive to climate change through changes in both stream flow
and evaporation rates. For the latter, there is consensus among all climate change projections developed in
this study that evaporation rates will increase significantly by the 2060 planning horizon. For the former,
there is uncertainty about the extent of stream flow changes with respect to both magnitude and patterns
of monthly sequencing, as discussed above. There is near consensus among model projections that the A2
emissions scenario, reflective of 2060 climate conditions, results in lower calculated firm yield. There is less
agreement on projected reductions in firm yield for the B1 emissions scenario, as discussed previously. The
implication is that water planners may need to reassess assumptions of reliable yield in water supply plans
that extend out 40 or 50 years. Regional water demands are projected to increase by approximately 20 -
40 percent in the two basins over the next 50 years (OWRB 2011). This, combined with the changes in
surface water yield projected, point toward an increased vulnerability to gaps in water supply and demand.
Improved conservation practices and/or greater reliance on groundwater may be needed.
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As with other steps in the process, the range of firm yield projections across multiple climate ensembles
and hydrologic models demonstrates, and at least partially quantifies, the uncertainty in these calculations.
As discussed above, applying multiple techniques and multiple sets of climate projections can help capture
uncertainties in these types of studies. For example, we have quantified standard deviations in firm yield
calculations for the two emissions scenarios and two basins ranging from 23 - 39 percent. However,
applying multiple models, or even using multiple sets of climate projections, may not be practical in all
planning projections due to cost and time constraints. In lieu of this approach, we recommend that a
reasonable margin of safety be applied to final decision variable results. Based on the work presented in
this study, a reasonable margin of safety might be on the order of 30 percent. The transferability of this
"rule of thumb" to other regions and basins requires further investigation.
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1.

This study has demonstrated quantitative methods for incorporating climate change into water
resources planning. Specifically, this study has focused on one widely utilized planning metric:
reservoir firm yield. However, the calculation of firm yield also requires projections of stream
flow and reservoir evaporation rates subject to climate variability. We therefore believe that the
methods presented here, and many of the conclusions drawn, are generally transferable to other
water supply planning studies, including integrated water resources management plans (e.g.,
CDM Smith 2011a). In the process of applying these methods to two case study basins, significant
uncertainties associated with various steps in the process have been demonstrated.

Key findings of this study include:

Levels of uncertainty associated with climate data ensembling methods and hydrologic
model selection can be as high as, or higher than, those associated with climate model
projections.

With respect to hydrologic modeling, simpler models, based on observed historical data,
have been shown to be as effective as more complex models in quantifying stream flow
sensitivities to climate variability for the basins studied here.

Given the results presented in this study, and the practical cost and schedule constraints
imposed on most planning studies, it is recommended that priority be given to incorporating
a breadth of climate projection data, potentially using a variety of methods, over
development of sophisticated hydrologic models.

The newly available Reclamation gridded runoff data set (Reclamation 2011) represents a
valuable contribution to this area of study and will likely be of great use water resources
planning efforts. These data by themselves, however, are unlikely to be suitable for
catchment scale hydrologic studies without significant bias correction. One option for bias
correction presented in this study was shown to be both simple in application and effective.
An identified limitation associated with these data is the fact that they do not readily lend
themselves to ensembling.

The use of multiple ensembles of climate data, and multiple modeling methods, allow for
final decision variable output to be presented probabilistically (e.g., percentile plots) rather
than deterministically (e.g., single values). These probabilistic outputs should be viewed as
measures of consensus across model projections and may be useful for planning decision
making. Tools developed under this study are designed to assist practitioners in
implementing this approach.

6-1



Section 6 e Conclusions

6. For the basins studied here, key output, including firm yield and stream flow, were shown to be
sensitive to the assumed greenhouse gas emission scenario, with more extreme hydrologic impacts
resulting from the more extreme emission scenario. Consequently, it may be useful to maintain
separation of these scenarios throughout a planning study. This result also highlights the importance of
greenhouse gas mitigation.

7. Firmyields for the two reservoirs studied here are projected to decrease in the future as a result of
climate change impacts to both stream flow and surface evaporation.

8. The results of this study generally highlight the importance of quantitatively incorporating climate
change into water resources planning efforts to better inform policy and planning decisionmaking.
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