

Agricultural Reuse of Treated Produced Water

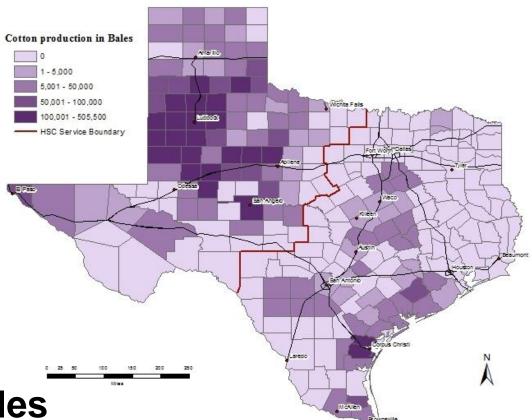
Katie Lewis and Jaroy Moore Texas A&M AgriLife Research – Lubbock

Bill Weathersby

Energy Water Solutions

Purpose of Project

Use locally produced oilfield-generated produced water for agricultural beneficial reuse purposes.


Objectives

1. Evaluate cotton growth and yield response to irrigating with treated produced water blended with groundwater (1:4 ratio).

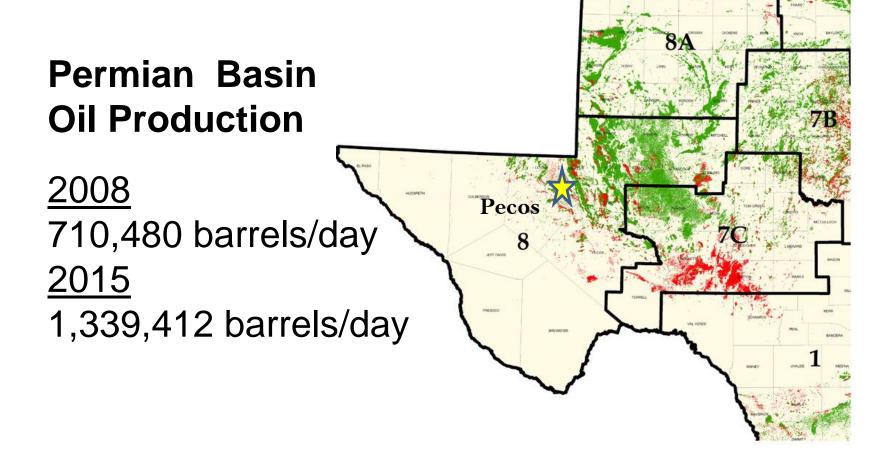
2. Determine the effect of treated produced water on soil chemical properties by measuring soil elemental concentrations and pH and electrical conductivity (EC) at varying soil depths.

Why Cotton?

- Non-food crop
- Texas' most valuable crop

2014 Yield

- U.S.: 15.8 million bales
- Texas: 6.2 million bales
 - 86% of Texas cotton produced in West Texas


Cotton Production

- Cotton is considered a drought and salt tolerant crop
 - Requires 510 610 mm water (20" 24")
 for maximum yield
 - ~50% of cotton in Texas High Plains is irrigated
- Threat to maintaining production

WATER QUANTITY and QUALITY

Location

- Texas A&M AgriLife Research Station, Pecos, TX
- 12.1" average rainfall (1981-2010)

Produced water

- Anadarko provided locally produced oilfield-generated produced water
- Transported the water to the test site for treatment and land-application

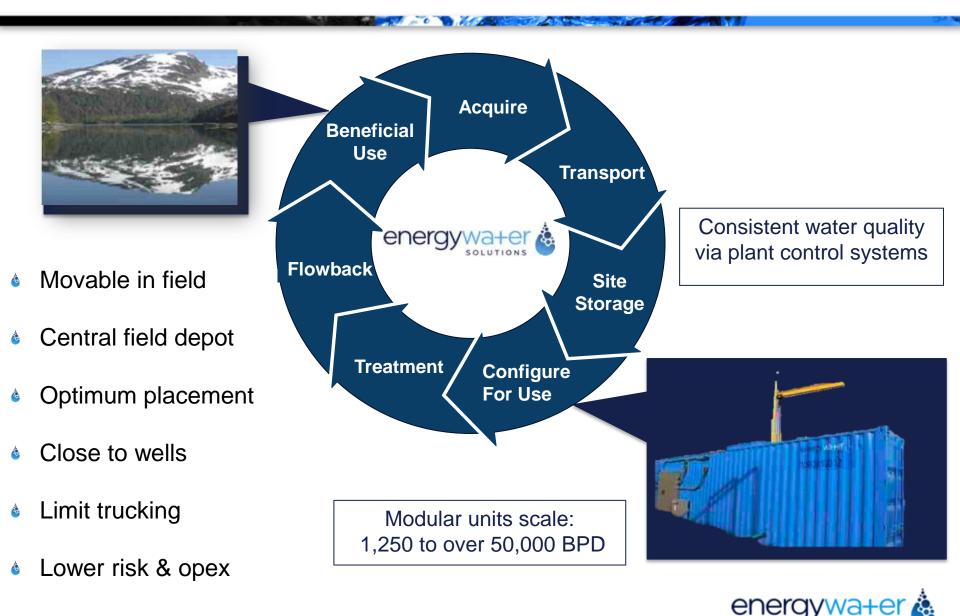
Treatment of produced water

- Energy Water Solutions (the Woodlands, TX)
- Developed a process train for the treatment of produced water from both oil and gas production fields

Wellington Water Works
 Colorado Water Court Approval 2007

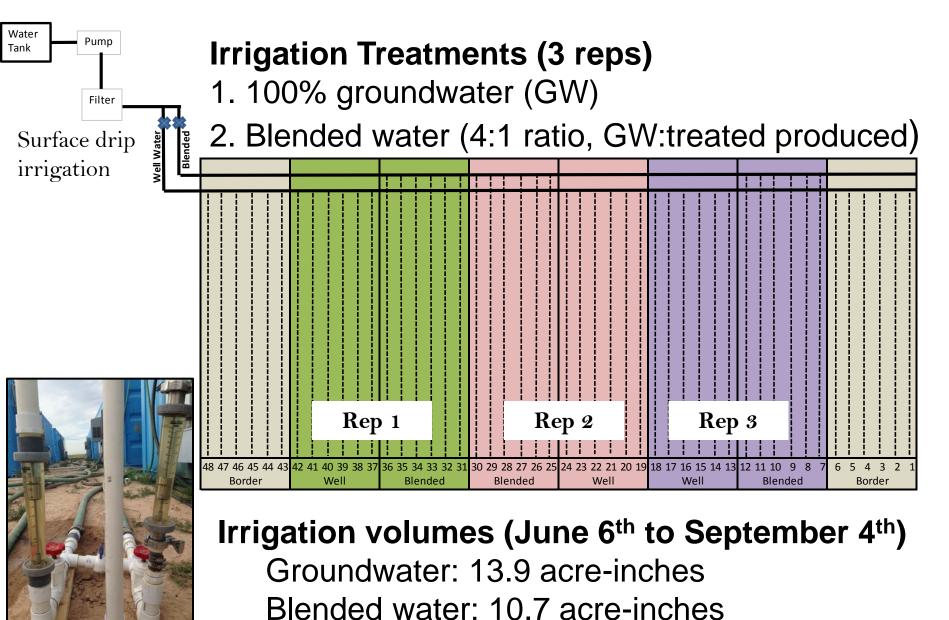
- HB and Senate Bill in Colorado enabling ground discharge
 - Over 7.5 M Barrels of recycled water released in aquifer

United States Patents for design and processes


- 6,348,154- Methods to remove heavy metals from water
- 8,097,163- Purification of oil field water for beneficial use
- 12/421,462 Beneficial use of produced water (pending)
- Texas Railroad Commission mobile permit
 - Five additional bills proposed in Texas in 2013 Sessio
 - SWD tariff, recycling mandate, discharge of fresh..

Mobilizing Recycling

planning for lowered costs


Confidential

EWS Optimized Process

Patented Technology

Confidential

Cotton variety: DP 1359

- Planted on 2 June 2015
- Harvested on 24 November 2015
 - Lint yield
 - Fiber quality

Soil and Water Monitoring:

- Soil samples collected at depth prior to initiating research and after the final irrigation event
 - 0-15 cm, 15-30 cm, and 30-60 cm
- Water samples (groundwater, treated produced, and blended) were collected every four weeks

Water samples collected on 6 June 2015

		Water Source						
Parameters Units		Groundwater	Treated Produced	Blended				
Sodium (Na)	ppm	999	42	766				
Calcium (Ca)	ppm	167	4	127				
Magnesium (Mg)	ppm	50	1	40				
Carbonate (CO ₃)	ppm	< 1	< 1	< 1				
Bicarbonate (HCO ₃)	ppm	122	37	122				
Chloride (Cl)	ppm	1900	20	1450				
Conductivity	µS/cm	4950	150	3800				
рН		7.6	7.8	7.4				
Phosphorus (P)	ppm	< 0.01	< 0.01	< 0.01				
Potassium (K)	ppm	18	5	14				
Nitrate (NO ₃)	ppm	5	6	4				
Sulfate (SO ₄)	ppm	1204	31	1362				
Boron (B)	ppm	0.5	4.1	0.8				
TDS	ppm	3218	98	2470				
SAR		17.4	4.9	15.2				

Soil Characteristics Hoban silty clay loam

pН	Conductivity	NO ₃ -N	Р	Κ	Ca	Mg	S	Na	SAR*
	mmhos/cm				ppm				
8.7	1.8	22.1	30	450	17634	516	482	1373	16.7
17% CaCO ₃ and 31% gypsum (NRCS)									

Soil Characteristics (post harvest)

Irrigation	Sample	pН	Conductivity	NO ₃ -N	Р	Κ	Ca	Mg	S	Na	В	Cl	SAR*
Source	Depth		mmhos/cm					ppm					
	0-6"	9.0	1.5	9	35	531	14915	575	654	1230	1.6	1018	13.8
Blended	6-12"	9.1	1.2	12	26	474	16896	513	476	1347	1.2	896	17.6
	12-24"	8.8	1.7	19	19	425	24243	485	528	1349	1.2	1256	15.3
	0-6"	8.9	2.2	36	35	528	15054	596	835	1751	1.6	1637	17.5
Groundwater	6-12"	9.0	2.1	18	26	471	16352	514	503	1496	1.1	979	17.3
	12-24"	8.8	1.8	26	16	409	25706	485	504	1487	1.2	1609	16.9

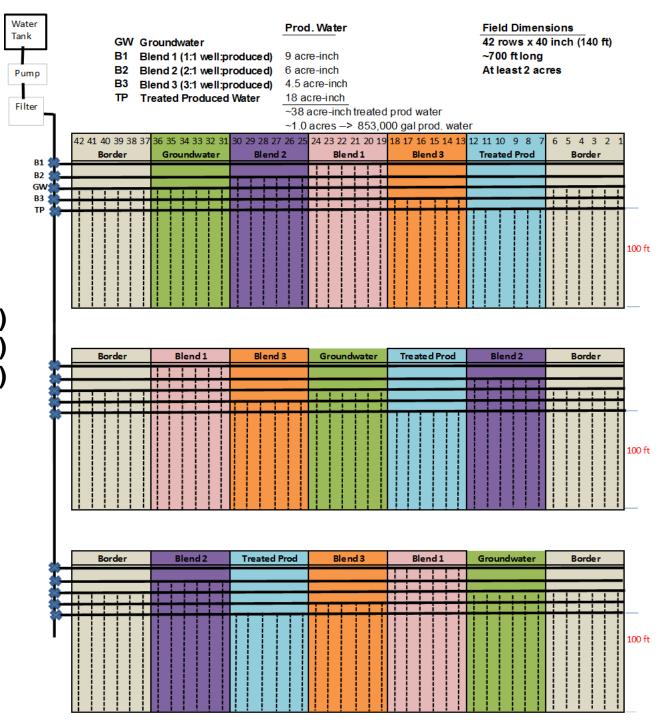
Cotton Yield

Irrigation	Lint Yield				
Source	(lb/acre)				
Groundwater	587				
Blended	568				
P-value	0.834				

Summary

Irrigating with treated produced water blended with groundwater

- Did not reduce cotton yield or lint quality
- Reduced soil salinity parameters


Future Research

- Identify and quantify boron in treated water – Fate in soil?
 - Plant uptake?
- Blending greater volumes of desalinated produced water with less well water may:
 - Improve soil chemical and physical properties
 - As result of decreasing salt load
 - Conserve fresh water sources
 - Enhance the longevity of agricultural production
- However, other ratios of blended water (and possibly other crops) must be examined...

Future Research

- 1. Groundwater (100%)
- 2. Blend 1 (1:1 GW:TPW)
- 3. Blend 2 (2:1 GW:TPW)
- 4. Blend 3 (3:1 GW:TPW)
- 5. TPW (100%)

Katie L. Lewis, Ph.D. Texas A&M AgriLife Research – Lubbock katie.lewis@ag.tamu.edu 361-815-3836

TEXAS A&M GRILIFE RESEARCH

energywater

nadark