An Innovative Zero-Liquid Discharge Intermediate-Cold-Liquid Eutectic-Freeze Desalination System

Produced Water Working Group

PIs:
Hamidreza Shabgard
Ramkumar Parthasarathy
Jie Cai
Outline

• Overview of Freeze-Desalination Technology
• Introduction to OU’s Concept
• Thermo-Economic Analysis
• Experimental Setup and Sample Results
Eutectic-Freeze Desalination

• Very old method of producing fresh water. Sailors in cold climates melted the frozen seawater to get fresh water on board ships.

• Application in food industries, wastewater treatment and seawater desalination.

Freeze separation with blue dye [2]

Applicability of various desalination technologies [1]

Principle of Operation

Phase diagram of a binary salt-water system

- Liquid (unsaturated solution)
- Salt solubility line
- Ice line
- Ice + salt
- Salt + saturated solution
- Eutectic point

Pure ice crystals float.
Salt sinks.

Temperature (°C)

Weight % NaCl

0 23.3 100

Saltwater

NaCl crystals + saltwater

Ice + saltwater

Ice + NaCl crystals
State-of-the-Art of Freeze-Desalination Technologies

- The major technologies:

 (i) direct contact freezing

 (ii) vacuum freezing

 (iii) indirect contact freezing

Direct Contact Freeze [2]

- Superior heat transfer
- Low quality water (the coolant forms chemical bonds with water)

Indirect Contact Freeze [4]

- High quality ice
- Poor heat transfer due to ice layer

Electrochemical freeze crystallization [4]

Freeze desalination of seawater using LNG cold energy [3]

- Simple; good heat transfer
- Requires significant compressor power

Vacuum Freeze [1]

OU’s Freeze-Desalination Technology

• Utilizes an immiscible inert liquid to remove heat from the brine by direct mixing

• Benefits from the superior heat transfer of direct contact freezing systems

• No attachment of ice to the cooling surfaces

• No chemicals

• Atmospheric Pressure

Schematic representation of the innovative freeze-desalination technology
Lab-Scale Freeze-Desalination Test Setup
Sample Experimental Results

The ice crystals formed from freezing a 10,000 ppm brine solution, (left) ice crystals transported to the settling tank from the freezing chamber, and (right) the ice crystals accumulated at the bottom of the freezing chamber.
Preliminary Results of Thermo-Economic Performance Analysis

<table>
<thead>
<tr>
<th>Brine TDS = 200,000 ppm</th>
<th>Heat Exchanger Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε = 1</td>
<td>ε = 0.9</td>
</tr>
<tr>
<td>100% Sep. efficiency</td>
<td>LCW ($/ton of brine)</td>
</tr>
<tr>
<td></td>
<td>LCW ($/barrel of brine)</td>
</tr>
<tr>
<td>90% Sep. efficiency</td>
<td>LCW ($/ton of brine)</td>
</tr>
<tr>
<td></td>
<td>LCW ($/barrel of brine)</td>
</tr>
<tr>
<td>80% Sep. efficiency</td>
<td>LCW ($/ton of brine)</td>
</tr>
<tr>
<td></td>
<td>LCW ($/barrel of brine)</td>
</tr>
<tr>
<td>70% Sep. efficiency</td>
<td>LCW ($/ton of brine)</td>
</tr>
<tr>
<td></td>
<td>LCW ($/barrel of brine)</td>
</tr>
</tbody>
</table>

- Considering a plant capacity of 1000 ton brine/day and 30 years lifetime
- Considers the additional cost of deep-well disposal of rejected brine
- Based on current industrial electricity prices in Oklahoma
- Based on actual brine compositions from Beaver County in Oklahoma