

Unit Summary

ourestream

- Self-contained, portable, modular unit.
- The modules are currently built with either an 8 MM BTU or 2 MM BTU burner.
- Modules can be connected in parallel to accommodate small to large treatment requirements.
- Burner capable of using natural gas or propane as fuel source
- 8 MM BTU
 - Daily Evaporation Rate: 350-400 bbls
 - 950-1150 BTU/cu. Ft
 - 480 V 3 Phase 150 amp electrical service
 - 80 kW power consumption
 - 140 CFM natural gas between 110-140 PSIG
 - Feed water minimum requirement of 5' of head pressure
- 2 MM BTU
 - Daily Evaporation Rate: 87-100 bbls
 - 50 kW power consumption

Process Diagram

Jurestream

- Heat transfer method that delivers up to 95% efficiency with natural gas
- Innovative burner design which reduces scaling potential typically seen in high TDS evaporation processes
- Ability to concentrate TDS up to levels as high as 300,000 mg/L
- Patent pending process for introducing water into the evaporation chamber which dramatically reduces contaminant emissions.
- Integrated Scrubbing that reduces Particulate Matter and other
 potential HAPs.

Purestreary Manuecomm

8 MM BTU Footprint

parestream

- Each 8 MM BTU Flash unit utilizes additional outriggers with integrated concrete ballast blocks
- Total Unit Weight
 - 8 MM: 25,000 lbs.
 - 2 MM:
- Required Footprint with ballast outriggers:
 - 1 Unit: 30' x 35'
 - 2 Units: 42' x 35' (See next slide)
 - Multiple units ganged together with brackets and pins
 - Additional space required for spare parts storage and controls/data skid

Standard Two 8 MM BTU Setup

ş:

purestrear

3rd Party Particulate Emissions Testing

• AST conducted investigative testing at the Purestream facility in Logan, Utah on August 31, 2017. Testing consisted of determining the emission rates of O2, CO2, SO2, NOx, CO, methanol, VOCs and PM from one water treatment evaporator unit. Produced

PM Results

Table 2-1 Summary of PM Results

Run Number	Run 1	Run 2	Run 3
Date	8/31/17	8/31/17	8/31/17
Fest Condition	100,000 TDS Brine	200,000 TDS Brine	300,000 TDS Brine
Particulate Matter Data			
Filterable PM Concentration, grain/dscf	0.012	0.012	0.008
Filterable PM Emission Rate, lb/hr	0.024	0.027	0.016
Condensable PM Concentration, grain/dscf	0.0048	0.0064	0.0058
Condensable PM Emission Rate, lb/hr	0.010	0.015	0.012
Total PM Concentration, grain/dscf	0.016	0.018	0.014
Total PM Emission Rate, lb/hr	0.034	0.042	0.028

Emissions Testing Cont. FLASH

Tsbla 2-3 Summary of Methanol & Speciated VOC Results

Run Number	Run 4	Run Number	Run 4
Date	8/31/17	Date	8/31/17
Test Condition	Clean Water with BTEX	Test Condition	Clean Water with BTEX
Methanol Data		Acetylene Data	
Concentration, ppmvd	2.37	Concentration, ppmvd	0.00
Emission Rate, Ib/hr	3.4E-03	Emission Rate, likite	0.06+00
Methane Data		T-2-Butane Data	
Concentration, ppmvd	1.03	Concentration, ppmvd	0.00
Emission Rate, fb/hr	5.SE-04	Emission Rate, livin	0.00+000
Eihane Date		1-Butene Data	
Concentration, ppmvd	0.00	Concentration, ppmvd	0.05
Emission Rate, Ib/hr	0.0E+00	Emission Rate, Ib/tr	1.5E-04
Ethylene Data		C-2-Butene Data	
Concentration, ppmvd	0.16	Concentration, ppmvd	0.00
Emission Rate, Ib/hr	1 6E-04	Emission Rate, Ihthe	0.06+00
Propune Data		Isopentane Data	
Concentration, ppmvd	6.00	Concentration, ppmvd	0.00
Barission Rate, Ib/tr	0.00+000	Emission Rate, lb/hr	0.00+000
Propylene Data		n-Pentane Data	
Concentration, pprovd	0.03	Concentration, ppmvd	0.00
Emission Rate, Ib/tr	4.7E-05	Huistion Rate, lb/tr	0.06+00
Isobutane Data		1,3-Buadiene Data	
Concentration, pps:vd	0.00	Concentration, ppmvd	0.00
Emission Rate, Ib/tr	0.0E+00	Emission Rate, lb/tr	0.0E+00
n-Butane Dats		Hexane Data	
Concentration, ppmvd	0.00	Concentration, ppmvd	0.05
Emission Rate, lb/hr	0.0E+00	Emission Rate, Ib/hr 1.6E-	

Table 2-2 Summary of SO₂, NO₅, CO & NMVOC Results

Run Number	Run 1	Run 1	Run 3	Run 4
Date	8/31/17	8/31/17	8/31/17	8/01/17
Test Condition	100,000 TDS Buine	200,000 TDS Brine	300,000 TDS Brine	Clean Water with BTEX
Carbon Dioside Data				
Concentration, % dry	12.0	11.8	11.5	10.7
Emission Rate, Ib/hr	198.7	214.6	190.8	169.9
Oxygen Data				
Omcentration, % dry	3.0	3.5	4.0	5.1
Nitrogen Oxides Data				
Concentration, ppmvd	42.1	46.0	45.9	31.1
Concentration, ppmvd @ 15% C2	13.8	15.6	16.0	11.6
Braission Retz, Ibhr	0.07	0.09	0.08	0.05
Sulfur Dioxide Data				
Concentration, ppmvd	0.1	2.9	5.6	66.3
Concentration, pymvd @ 13% G ₂	0.03	1.0	2.0	24.8
Baission Retz, Behr	0.0002	0.008	0.014	0.15
Carbon Monoxide Data				
Concentration, ppmvd	30.6	32.4	24.0	14.4
Concentration, pyrnvd @ 1958 C2	10.1	11.0	8.4	54
Baission Retz, Ildur	0.03	0.04	0.03	0.01
Non-Methane Volatile Organie Compounds Data				
Concentration, ppmvd	0.0	4.9	2.8	1.2
Concentration, ppmvd @ 15% G ₂	0.0	1.5	1.0	0.5
Emission Rate, Infor	0.000	0.009	0.005	0.002

Emissions Testing Cont. FLASH

Methanol Results:

Feed Flow Rate	1.25	gpm
ppm Methanol in feed	1310	ppm
Total lbs/hr methanol in feed	0.82	lbs/hr
Exhaust rate	0.0034	lbs/hr
% of methanol out stack	0.41	1%

Projection:
Feed Rate
ppm Methanol
Tons/year Methanol in
Tons/year Out stack HAP

1600 bbls/day
2100 ppm
220 Tons/year in feed
0.92 Tons/year Emissions

Two 8 MM BTU Annual Emissions

Tons Per year Calculator

Testing Data Burner Size:	750,000	BTU
Treated BBL/Day	800	
Total Installation Burner Size:	16,000,000	BTU
# of 8M BTU units	2	
Fuel Type	NG	
Feed TDS	170,000	
Up time	100%	
Down Days/Yr	0	

*The following permit by rule parameters is for Pennsylvania

Emissions Testing I	DATA	Site Deployment Projected Emissions			
<u>Constituent</u>	lb/hr	<u>lb/yr</u>	TPY Exempt Status Requirement		Meets exempt status
со	0.033	6,167.04	3.08	<20 TPY	yes
NOx	0.08	14,950.40	7.48	<10 TPY	yes
Sox	0.008	1,495.04	0.75	<8 TPY	yes
VOC's	0.0046	859.65	0.43	<8 TPY	yes
PM10	0.031	5,793.28	2.90	<3 TPY	yes
HAPs					
Methanol	0.0034	635.39	0.32	<1 TPY	yes
Methane	0.00059	110.26	0.06	<1 TPY	yes
Ethane	0	-	-	<1 TPY	yes
Ethylene	0.00016	29.90	0.01	<1 TPY	yes
Propane	0	-	-	<1 TPY	yes
Propylene	0.000047	8.78	0.00	<1 TPY	yes
Isobutane	0	-	-	<1 TPY	yes
n-Butane	0	-	-	<1 TPY	yes
Acetylene	0	-	-	<1 TPY	yes
T-2-Butene	0	-	-	<1 TPY	yes
1-Butene	0.00015	28.03	0.01	<1 TPY	yes
C-2-Butene	0	-	-	<1 TPY	yes
Isopentane	0	-	-	<1 TPY	yes
n-Pentane	0	-	-	<1 TPY	yes
1,3-Buadiene	0	-	-	<1 TPY	yes
Hexane	0.00016	29.90	0.01	<1 TPY	yes
Total HAPs	0.004507	842.27	0.42	<2.5 TPY	yes

P<u>urestrear</u>]

Impacts Assessment

- Environmental Permits
 - Emissions permitting varies from state to state
 - Based on initial evaluation current unit emissions allow for approximately a 2000 bbl/day setup while meeting "permit by rule" parameters
 - Secondary containment is required forunits on site
 - No other environmental issues found based on previous and current field deployments
- Emissions Testing
 - Detailed water analysis on all Influent water streams
 - Continual vapor condensate testing is conducted on site by Purestream personnel
 - 3rd party particulate emissions testing to be performed on site as necessary

Expanding Enhanced Evaporation

- Customer Awareness
 - Proven/trusted alternative to current disposal options
 - Educate customer on potential CAPEX and OPEX savings achieved through Flash evaporation
 - Heavy Brine Reuse
 - Repurpose/Utilize wasted flare gas as supplemental energy source
 - Reduction of liability including potential class action lawsuits from seismic events

purestream

- Reduction in disposal well associated CAPEX
 - Well
 - Storage
 - Pumps
 - Etc.
- Decrease in trucking related expenses
- Safety
 - Reduction in total trucking
- Environmental
 - Reduction in spills potential

Experience

- Purestream is a water technology service provider founded in 2010
- Treated millions of bbls of water for reuse or disposal using proprietary technology developed in house
- Owned and operated multiple evaporation pond facilities
 - Tested and developed enhanced evaporation technology to maximize pond evaporation
- Current Sector Opportunities
 - Oil and Gas
 - Power Gen
 - Food and Beverage
 - Mining
 - Pulp and Paper
- Have been developing evaporation technology for past 5 years, during which time have:
 - Completed multiple extended field trials
 - Multiple unit improvements optimizing to live field conditions, including:
 - Emissions
 - Footprint
 - Scaling
 - Thermal efficiency

<u>Contacts</u>

- Adam Gilles VP Sales and Marketing North America <u>agilles@purestream.com</u> 432-214-1930
- Raymon Jones rjones@purestream.com 432-553-9170

