
HYDROGRAPHIC SURVEY of HEALDTON CITY LAKE

Final Report

October 6, 2010

Prepared by:

TABLE OF CONTENTS

TABLE OF CONTENTS	2
TABLE OF FIGURES	3
TABLE OF TABLES	3
INTRODUCTION	4
LAKE BACKGROUND	4
HYDROGRAPHIC SURVEYING PROCEDURES	6
Pre-survey Planning	<i>6</i>
Boundary File	<i>6</i>
Set-up	6
Field Survey	<i>6</i>
Lake Elevation Acquisition	<i>6</i>
Method	7
Technology	7
Survey	7
Quality Control/Quality Assurance	7
Data Processing	9
GIS Application	10
RESULTS	10
SUMMARY and COMPARISON	11
REFERENCES	12
APPENDIX A: Area-Capacity Data	13
APPENDIX B: Healdton City Lake Maps	17

TABLE OF FIGURES

Figure 1: Location map for Healdton City Lake	16 . 18 . 19
TABLE OF TABLES	
Table 1: Area and Volume Comparisons of Healdton City Lake.	11
Table A. 1: Healdton City Lake Capacity/Area by 0.1-ft Increments	

HEALDTON CITY LAKE HYDROGRAPHIC SURVEY REPORT

INTRODUCTION

The Oklahoma Water Resources Board (OWRB) conducted a hydrographic survey of Healdton City Lake on March 16, 2010. The purpose of this survey was to collect hydrographic data of the lake and convert this information into an elevation-area-capacity table. This project was funded by the OWRB's Dam Safety Program.

LAKE BACKGROUND

Healdton City Lake, also known as "Upper Bayou Watershed, site number 10", is located on Oil Branch Creek in Carter County (**Figure 1**). It was built in 1979. Its original purposes were water supply, flood control, and recreation. The dam is located in Sec. 6-T4S-R2W IM. The dam on this reservoir is classified as a high hazard dam. The "high hazard" classification means that dam failure, if it occurred, may cause loss of life, serious damage to homes, industrial or commercial buildings, important public utilities, main highways or railroads. This classification does not mean that it is likely to fail.



Figure 1: Location map for Healdton City Lake.

HYDROGRAPHIC SURVEYING PROCEDURES

The process of surveying a reservoir uses a combination of Geographic Positioning System (GPS) and acoustic depth sounding technologies that are incorporated into a hydrographic survey vessel. As the survey vessel travels across the lake's surface, the echosounder gathers multiple depth readings every second. The depth readings are stored on the survey vessel's on-board computer along with the positional data generated from the vessel's GPS receiver. The collected data files are downloaded daily from the computer and brought to the office for editing. During editing, data "noise" is removed or corrected, and average depths are converted to elevation readings based on the daily-recorded lake level elevation on the day the survey was performed. Accurate estimates of area-capacity can then be determined for the lake by building a 3-D model of the reservoir from the corrected data. The process of completing a hydrographic survey includes four steps: pre-survey planning, field survey, data processing, and GIS application.

Pre-survey Planning

Boundary File

The boundary file for Healdton City Lake was on-screen digitized from the 2006 color digital orthoimagery quarter quadrangle (DOQQ) mosaic of Carter County, Oklahoma. The screen scale was set to 1:1,500. A line was drawn to represent the shoreline as closely as possible. Due to the photography being a summer photo, it was difficult to determine the actual shoreline when there are trees and other vegetation hanging over the lake. The 2008 and 2003 DOQQs of the lakes were used as back ground reference. The reservoir boundaries were digitized in NAD 1983 State Plane Coordinates (Oklahoma South-3502).

Set-up

HYPACK software from Hypack, Inc. was used to assign geodetic parameters, import background files, and create virtual track lines (transects). The geodetic parameters assigned were State Plane NAD 83 Zone OK-3502 Oklahoma South with distance units and depth as US Survey Feet. The survey transects were spaced according to the accuracy required for the project. The survey transects within the digitized reservoir boundary were at 300 ft increments and ran perpendicular to the original stream channels and tributaries. Approximately 33 virtual transects were created for the Healdton City Lake.

Field Survey

Lake Elevation Acquisition

The lake elevation for Healdton City Lake was obtained by collecting positional data over a period of 159 minutes with a survey-grade Global Positioning System (GPS) receiver. The receiver was placed over the water's surface. A measurement was taken from the antenna to the surface of the water. The collected data and antenna height was then uploaded to the Online Positioning Users Service (OPUS) website. The National Geodetic Survey (NGS) operates OPUS as a means to provide GPS users easier access to the National Spatial Reference System (NSRS). OPUS allows users to submit their GPS data files to NGS, where the data is processed to determine a position using NGS computers and software. Calculated

coordinates are averaged from three independent single-baseline solutions computed by double-differenced, carrier-phase measurements between the collected data file and 3 surrounding Continuously Operating Reference Stations (CORS). Under ideal conditions, OPUS can easily resolve most positions to within centimeter accuracy. A report containing the newly calculated positional data was electronically returned via email. This report contained the elevation of the surface of the water corrected for the antenna height.

Method

The procedures followed by the OWRB during the hydrographic survey adhere to U.S. Army Corps of Engineers (USACE) standards (USACE, 2002). The quality control and quality assurance procedures for equipment calibration and operation, field survey, data processing, and accuracy standards are presented in the following sections.

Technology

The Hydro-survey vessel is an 18-ft aluminum Silverstreak hull with cabin, powered by a single 115-Horsepower Mercury outboard motor. Equipment used to conduct the survey included: a ruggedized notebook computer; Syqwest Bathy 1500 Echo Sounder, with a depth resolution of 0.1 ft; Trimble Navigation, Inc. Pro XR GPS receiver with differential global positioning system (DGPS) correction; and an Odom Hydrographics, Inc, DIGIBAR-Pro Profiling Sound Velocimeter. The software used was HYPACK.

Survey

A two-man survey crew was used during the project. Data collection for Healdton City Lake occurred on March 16, 2010. The water level elevation for Healdton City Lake was 888.26 ft Geodetic Vertical Datum (NGVD). Data collection began at the dam and moved upstream. The survey crew followed the parallel transects created during the pre-survey planning while collecting depth soundings and positional data. Data was also collected along a path parallel to the shoreline at a distance that was determined by the depth of the water and the draft of the boat – generally, two to three feet deep. Areas with depths less than this were avoided.

Quality Control/Quality Assurance

While on board the Hydro-survey vessel, the Syqwest Bathy 1500 Echo Sounder was calibrated using A DIGIBAR-Pro Profiling Sound Velocimeter, by Odom Hydrographics. The sound velocimeter measures the speed of sound at incremental depths throughout the water column. The factors that influence the speed of sound—depth, temperature, and salinity—are all taken into account. Deploying the unit involved lowering the probe, which measures the speed of sound, into the water to the calibration depth mark to allow for acclimation and calibration of the depth sensor. The unit was then gradually lowered at a controlled speed to a depth just above the lake bottom, and then was raised to the surface. The unit collected sound velocity measurements in feet/seconds (ft/sec) at 1 ft increments on both the deployment and retrieval phases. The data was then reviewed for any erroneous readings, which were then edited out of the sample. The sound velocity corrections were then applied to the to the raw depth readings. The average speed of sound in the water column was 4781.61 ft/sec during the Healdton City Lake survey.

A quality assurance cross-line check was performed on intersecting transect lines and channel track lines to assess the estimated accuracy of the survey measurements. The overall accuracy

of an observed bottom elevation or depth reading is dependent on random and systematic errors that are present in the measurement process. Depth measurements contain both random errors and systematic bias. Biases are often referred to as systematic errors and are often due to observational errors. Examples of bias include a bar check calibration error, tidal errors, or incorrect squat corrections. Bias, however, does not affect the repeatability, or precision, of results. The precision of depth readings is affected by random errors. These are errors present in the measurement system that cannot be easily reduced by further calibration. Examples of random error include uneven bottom topography, bottom vegetation, positioning error, extreme listing of survey vessel, and speed of sound variation in the water column. An assessment of the accuracy of an individual depth or bottom elevation must fully consider all the error components contained in the observations that were used to determine that measurement. Therefore, the ultimate accuracy must be estimated (thus the use of the term "estimated accuracy") using statistical estimating measures (USACE, 2002).

The depth accuracy estimate is determined by comparing depth readings taken at the intersection of two lines and computing the difference. This is done on multiple intersections. The mean difference of all intersection points is used to calculate the mean difference (MD). The mean difference represents the bias present in the survey. The standard deviation (SD), representing the random error in the survey, is also calculated. The mean difference and the standard deviation are then used to calculate the Root Mean Square (RMS) error. The RMS error estimate is used to compare relative accuracies of estimates that differ substantially in bias and precision (USACE, 2002). According the USACE standards, the RMS at the 95% confidence level should not exceed a tolerance of \pm 2.0 ft for this type of survey. This simply means that on average, 19 of every 20 observed depths will fall within the specified accuracy tolerance.

HYPACK Cross Statistics program was used to assess vertical accuracy and confidence measures of acoustically recorded depths. The program computes the sounding difference between intersecting lines of single beam data. The program provides a report that shows the standard deviation and mean difference. A total of 85 cross-sections points at Healdton City Lake were used to compute error estimates. A mean difference of 0.01 ft and a standard deviation of 0.29 ft were computed from intersections. The following formulas were used to determine the depth accuracy at the 95% confidence level.

$$RMS = \sqrt{\sigma^2_{Random\ error} + \sigma^2_{Bias}}$$

where:

Random error = Standard deviation

Bias = Mean difference

RMS = root mean square error (68% confidence level)

and:

RMS (95%) depth accuracy = $1.96 \times RMS(68\%)$

An RMS of \pm 0.58 ft with a 95% confidence level is less than the USACE's minimum performance standard of \pm 2.0 ft for this type of survey. A mean difference, or bias, of 0.01 ft is well below the USACE's standard maximum allowable bias of \pm 0.5 ft for this type of survey.

The GPS system is an advanced high performance geographic data-acquisition tool that uses DGPS to provide sub-meter positional accuracy on a second-by-second basis. Potential errors are reduced with differential GPS because additional data from a reference GPS receiver at a known position are used to correct positions obtained during the survey. Before the survey, Trimble's Pathfinder Controller software was used to configure the GPS receiver. To maximize the accuracy of the horizontal positioning, the horizontal mask setting was set to 15 degrees and the Position Dilution of Precision (PDOP) limit was set to 6. The position interval was set to 1 second and the Signal to Noise Ratio (SNR) mask was set to 4. The United States Coast Guard reference station used in the survey is located near Sallisaw, Oklahoma.

A latency test was performed to determine the fixed delay time between the GPS and single beam echo sounder. The timing delay was determined by running reciprocal survey lines over a channel bank. The raw data files were downloaded into HYPACK - LATENCY TEST program. The program varies the time delay to determine the "best fit" setting. A position latency of 0.4 seconds was produced and adjustments were applied to the raw data in the EDIT program.

Data Processing

The collected data was transferred from the field computer onto an OWRB desktop computer. After downloading the data, each raw data file was reviewed using the EDIT program within HYPACK. The EDIT program allowed the user to assign transducer offsets, latency corrections, tide corrections, display the raw data profile, and review/edit all raw depth information. Raw data files are checked for gross inaccuracies that occur during data collection.

Offset correction values of 3.2 ft. starboard, 6.6 ft. forward, and -1.1 ft. vertical were applied to all raw data along with a latency correction factor of 0.4 seconds. The speed of sound corrections were applied during editing of raw data.

A correction file was produced using the HYPACK TIDES program to account for the variance in lake elevation at the time of data collection. Within the EDIT program, the corrected depths were subtracted from the elevation reading to convert the depth in feet to an elevation. The average elevation of the lake during the survey was 888.26 ft (NGVD).

After editing the data for errors and correcting the spatial attributes (offsets and tide corrections), a data reduction scheme was needed due to the large quantity of collected data.. To accomplish this, the corrected data was resampled spatially at a 5 ft interval using the Sounding Selection program in HYPACK. The resultant data was saved and exported out as

a xyz.txt file. The HYPACK raw and corrected data files for Healdton City Lake are located on the DVD entitled *FEMA 2010 HYPACK/GIS Metadata Disk 2*.

GIS Application

Geographic Information System (GIS) software was used to process the edited XYZ data collected from the survey. The GIS software used was ArcGIS Desktop and ArcMap, version 9.3.1, from Environmental System Research Institute (ESRI). All of the GIS datasets created are in Oklahoma State Plane North Coordinate System referenced to the North American Datum 1983. Horizontal and vertical units are in feet. The edited data points in XYZ text file format were converted into ArcMap point coverage format. The point coverage contains the X and Y horizontal coordinates and the elevation and depth values associated with each collected point.

Volumetric and area calculations were derived using a Triangulated Irregular Network (TIN) surface model. The TIN model was created in ArcMap, using the collected survey data points and the lake boundary inputs. The TIN consists of connected data points that form a network of triangles representing the bottom surface of the lake. The lake volume was calculated by slicing the TIN horizontally into planes 0.1 ft thick. The cumulative volume and area of each slice are shown in **APPENDIX A: Area-Capacity Data.**

Contours, depth ranges, and the shaded relief map were derived from a constructed digital elevation model grid. This grid was created using the ArcMap Topo to Raster Tool and had a spatial resolution of five feet. A low pass 3x3 filter was run to lightly smooth the grid to improve contour generation. The contours were created at a 2-ft interval using the ArcMap Contour Tool. The contour lines were edited to allow for polygon topology and to improve accuracy and general smoothness of the lines. The contours were then converted to a polygon coverage and attributed to show 2-ft depth ranges across the lake. The bathymetric maps of the lakes are shown with 2-ft contour intervals in **APPENDIX B: Healdton City** Lake Maps.

All geographic datasets derived from the survey contain Federal Geographic Data Committee (FGDC) compliant metadata documentation. The metadata describes the procedures and commands used to create the datasets. The GIS metadata file for both lakes is located at on the DVD entitled *FEMA 2010 HYPACK/GIS Metadata Disk 2*.

RESULTS

Results from the 2010 OWRB survey indicate that Healdton City Lake encompasses 324 acres and contains a cumulative capacity of 3,231 ac-ft at the normal pool elevation (888.6 ft NGVD). The average depth for Healdton City Lake was 10.0 ft.

SUMMARY and COMPARISON

Table 1 is a comparison of area and volume changes of Healdton City Lake at the normal pool elevation. Based on the design specifications, Healdton City Lake had an area of 370 acres and cumulative volume of 3,766 acre-feet of water at normal pool elevation (888.6 ft NGVD). The surface area of the lake has had a decrease of 585 acres or approximately 14%. The 2010 survey shows that Healdton City Lake has an apparent decrease in capacity of 12.4% or approximately 46 acre-feet. Caution should be used when directly comparing between the design specifications and the 2010 survey conducted by the OWRB because different methods were used to collect the data and extrapolate capacity and area figures. It is the recommendation of the OWRB that another survey using the same method used in the 2010 survey be conducted in 10-15 years. By using the 2010 survey figures as a baseline, a future survey would allow an accurate sedimentation rate to be obtained.

Table 1: Area and Volume Comparisons of Healdton City Lake at normal pool (888.6 ft NGVD).

T	Survey Year				
Feature	1979 Design Specifications	2010			
Area (acres)	370	324			
Cumulative Volume (acre-feet)	3,766	3,231			
Average depth (ft)	10.2	10.0			
Maximum Depth (ft)		30.3			

REFERENCES

U.S. Army Corps of Engineers (USACE). 2002. Engineering and Design - Hydrographic Surveying, Publication EM 1110-2-1003, $3^{\rm rd}$ version.

Oklahoma Water Resources Board (OWRB). 2007. Oklahoma Water Atlas.

Oklahoma Water Resources Board (OWRB). 1977. Upper Bayou Watershed, Site No. 10, Multi-purpose Project, Review of Plans, Project Report.

APPENDIX A: Area-Capacity Data

Table A. 1: Healdton City Lake Capacity/Area by 0.1-ft Increments.

HEALDTON CITY LAKE AREA-CAPACITY TABLE

OKLAHOMA WATER RESOURCES BOARD 2010 Survey

Capacity in acre-feet by tenth foot elevation increments

Area in acres by tenth foot elevation increments

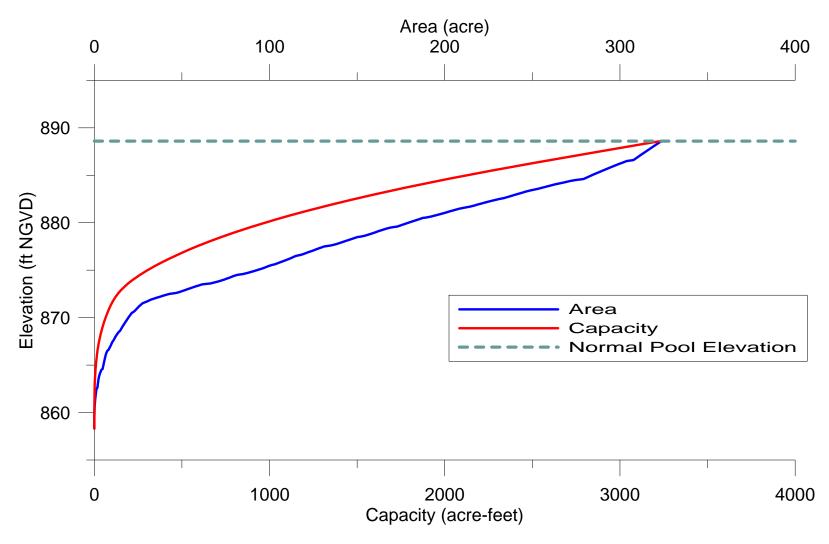

Area in acres by tenth foot elevation increments											
Elevation											
(ft NGVD)		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
858	Area				0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Capacity				0.0	0.0	0.0	0.0	0.0	0.0	0.0
859	Area	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Capacity	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
860	Area	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.3
300	Capacity	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
861	Area	0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8
	Capacity	0.2	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6
862	Area	0.8	0.9	1.0	1.1	1.2	1.3	1.7	1.8	1.9	1.9
	Capacity	0.7	0.8	0.9	1.0	1.1	1.3	1.4	1.6	1.7	1.9
863	Area	2.0	2.1	2.2	2.2	2.3	2.4	2.5	2.6	2.7	2.8
	Capacity	2.1	2.3	2.5	2.8	3.0	3.2	3.5	3.7	4.0	4.3
864	Area	3.0	3.2	3.4	3.6	3.8	4.0	4.7	4.9	5.0	5.1
	Capacity	4.6	4.9	5.2	5.6	5.9	6.3	6.7	7.2	7.7	8.2
865	Area	5.2	5.3	5.4	5.5	5.7	5.8	5.9	6.0	6.1	6.3
	Capacity	8.7	9.2	9.8	10.3	10.9	11.4	12.0	12.6	13.2	13.9
866	Area	6.4	6.5	6.7	6.9	7.1	7.3	8.1	8.3	8.6	8.9
	Capacity	14.5	15.1	15.8	16.5	17.2	17.9	18.6	19.5	20.3	21.2
867	Area	9.2	9.5	9.7	10.0	10.2	10.5	10.9	11.2	11.5	11.8
	Capacity	22.1	23.0	24.0	25.0	26.0	27.0	28.1	29.2	30.3	31.5
868	Area	12.1 32.7	12.4 33.9	12.8 35.2	13.2 36.5	13.6 37.8	14.0 39.2	14.6 40.6	15.0 42.1	15.3 43.6	15.6 45.1
	Capacity	15.9	16.2	16.5	16.9	17.3	17.6	18.0	18.3	18.7	19.0
869	Area	46.7	48.3	50.0	51.6	53.3	55.1	56.9	58.7	60.5	62.4
	Capacity	19.4	19.8	20.2	20.6	21.0	21.4	22.3	23.0	23.5	24.0
870	Area Capacity	64.3	66.3	68.3	70.3	72.4	74.5	76.7	79.0	81.3	83.7
		24.5	25.0	25.6	26.2	26.8	27.4	28.7	30.0	31.2	32.3
871	Area Capacity	86.1	88.6	91.1	93.7	96.4	99.1	101.8	104.8	107.8	111.0
	Area	33.8	35.7	37.6	39.2	40.8	42.8	46.7	48.6	50.2	51.8
872	Capacity	114.3	117.8	121.5	125.3	129.3	133.5	137.9	142.6	147.6	152.7
	Area	53.3	54.8	56.3	58.0	59.7	61.5	66.3	68.5	70.5	72.2
873	Capacity	157.9	163.3	168.9	174.6	180.5	186.6	192.8	199.6	206.5	213.6
	Area	74.0	75.5	77.0	78.4	79.8	81.4	85.0	87.2	89.2	91.0
874	Capacity	221.0	228.4	236.1	243.8	251.7	259.8	268.0	276.7	285.5	294.5
_	Area	92.9	94.5	96.1	97.7	99.0	100.4	102.7	104.2	105.6	107.0
875	Capacity	303.7	313.1	322.6	332.3	342.1	352.1	362.2	372.5	383.0	393.7
	Area	108.5	109.9	111.3	112.5	113.8	115.0	117.7	119.3	120.8	122.3
876	Capacity	404.5	415.4	426.4	437.6	448.9	460.4	471.9	483.8	495.8	508.0
	Area	123.8	125.3	126.8	128.2	129.6	131.1	134.9	137.2	139.0	140.7
877	Capacity	520.3	532.7	545.3	558.1	571.0	584.0	597.2	610.8	624.6	638.6
	Area	142.3	143.9	145.4	147.1	148.7	150.4	153.8	155.6	157.3	159.0
878	Capacity	652.8	667.1	681.5	696.2	711.0	725.9	741.0	756.5	772.2	788.0

Table A. 2: Healdton City Lake Capacity/Area by 0.1-ft Increments (cont).

HEALDTON CITY LAKE AREA-CAPACITY TABLE OKLAHOMA WATER RESOURCES BOARD 2010 Survey Capacity in acre-feet by tenth foot elevation increments Area in acres by tenth foot elevation increments Elevation 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 0.9 (ft NGVD) 162.1 163.7 169.2 172.8 174.5 177.6 160.6 165.4 167.2 176.1 Area 879 804.0 820.1 836.4 852.8 869.5 886.3 903.3 920.7 938.2 955.9 Capacity 179.2 180.9 182.6 184.2 185.8 187.5 191.0 193.2 195.3 197.2 Area 880 Capacity 973.8 991.8 1010.0 1028.3 1046.8 1065.5 1084.3 1103.5 1123.0 1142.6 199.2 201.1 203.0 204.9 206.8 208.8 211.9 214.4 216.5 218.5 Area 881 1162.4 1182.4 1202.6 1223.0 1243.6 1264.4 1285.4 1306.7 1328.3 1350.0 Capacity 220.4 222.4 224.5 226.6 228.8 231.0 233.8 235.7 237.5 239.3 Area 882 1372.0 1394.1 1416.5 1439.0 1461.8 1484.8 1508.0 1531.5 1555.2 1579.0 Capacity 241.1 243.0 244.8 246.8 248.9 251.1 253.9 255.9 257.8 259.9 Area 883 1603.0 1627.2 1651.6 1676.2 1701.0 1726.0 1751.2 1776.7 1802.4 1828.3 Capacity 280.3 262.1 264.5 267.0 269.3 271.7 274.6 279.2 281.5 282.7 Area 884 1854.4 1880.7 1907.3 1934.1 1961.2 1988.5 2016.1 2044.1 2072.2 2100.4 Capacity 291.5 294.2 283.9 285.2 286.4 287.7 288.9 290.2 292.8 295.5 Area 885 2128.8 2157.2 2185.8 2214.5 2243.3 2272.3 2301.4 2330.6 2360.0 2389.5 Capacity 299.6 296.9 298.2 301.0 302.5 303.9 307.6 308.4 309.2 310.0 Area 886 2419.1 2448.8 2478.7 2508.8 2539.0 2569.3 2599.7 2630.6 2661.4 2692.4 Capacity 310.8 311.6 312.4 313.2 314.0 314.8 315.6 316.4 317.2 318.0 Area 887 2723.4 2754.6 2785.8 2817.0 2848.4 2879.9 2911.4 2943.0 2974.6 3006.4 Capacity 318.8 319.6 320.4 321.2 322.0 322.8 324.0 Area 888 3038.3 3070.2 3102.2 3134.3 3166.4 3198.7 3231.0 Capacity

Figure A. 1. Area-Capacity Curve for Healdton City Lake

Healdton City Lake Area-Capacity by Elevation 2010 Survey

APPENDIX B: Healdton City Lake Maps

Figure B. 1: Healdton City Lake Bathymetric Map with 2-foot Contour Intervals.

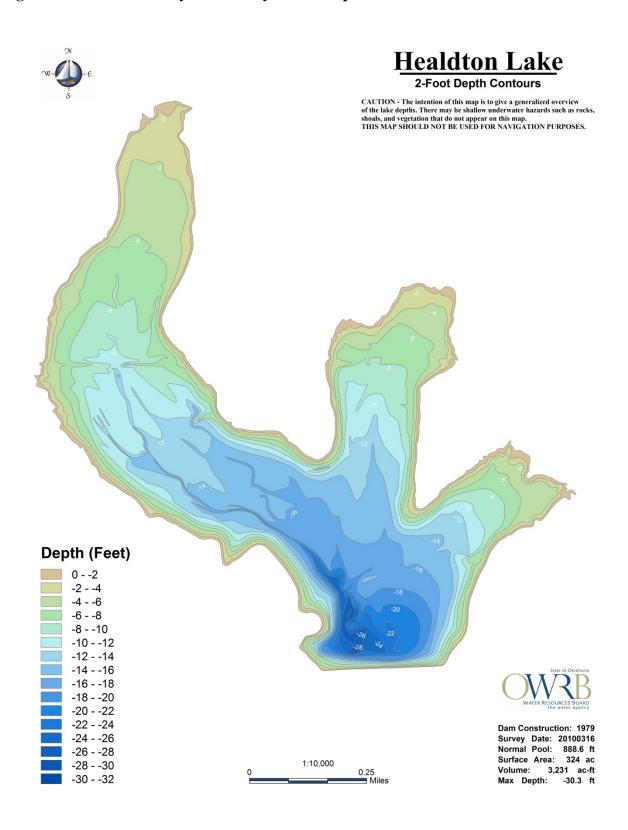


Figure B. 2: Healdton City Lake Shaded Relief Bathymetric Map.

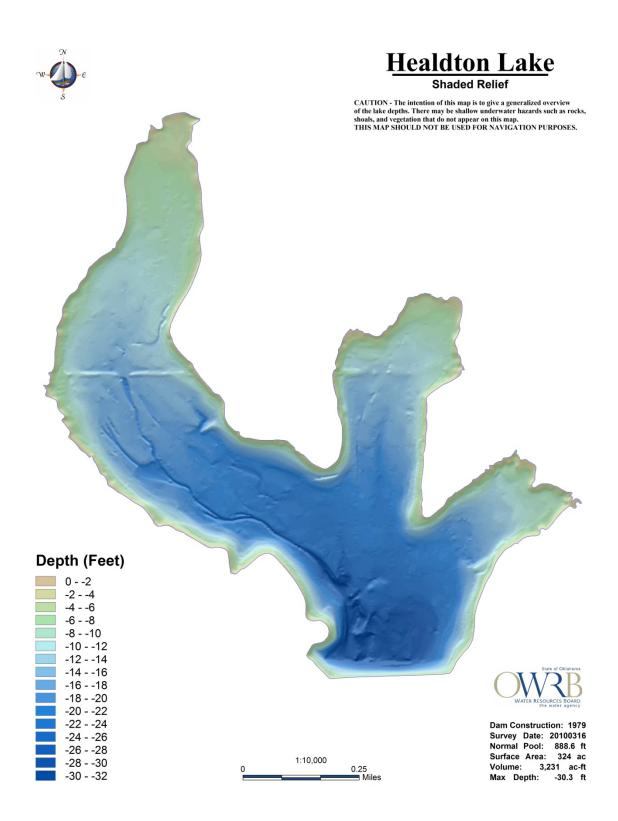
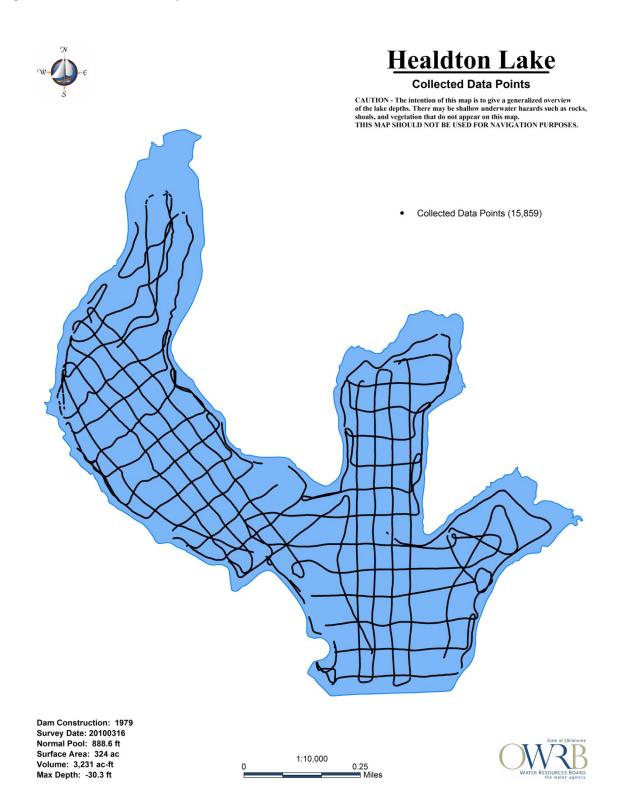



Figure B. 3: Healdton City Lake Collected Data Points.

