The Arbuckle-Simpson

Hydrology Study Noel Osborn

Arbuckle-Simpson Hydrology Study

 Study area Study overview Describe hydrologic concepts and define terms Hydrogeologic setting of the Arbuckle-Simpson aquifer ♦ Examples

Population Density

Eastern Arbuckle-Simpson Aquifer Average Annual Withdrawal 2004-2008

Senate Bill 288

Moratorium

- Conducts and completes a hydrological study
- Approves a maximum annual yield that will not reduce the natural flow of water from springs or streams emanating from the basin

Purpose

To acquire sufficient understanding of the hydrology of the Arbuckle-Simpson aquifer to enable development and implementation of a comprehensive water resource management plan that protects the flow of springs and streams in the region.

Scope of investigation

- Aquifer-scale assessment for determination of the maximum annual yield
- Information can be applied to many water management and hydrological issues (permits, water supply planning, well drilling, environmental issues)

Eastern Arbuckle-Simpson Aquifer

- Largest part of the aquifer
- Most of the current groundwater permits and withdrawals
- Hydrogeologic data (wells and stream
- gages)
 Accessible
 Budget and time constraints

Digital Groundwater Flow Model

- Test our understanding of the aquifer
- Predict the consequences of groundwater withdrawals on streamflow
- Evaluate allocation of water rights
- Simulate management

options

Protection of Springs and Streams

 Approve a maximum annual yield that will not reduce the natural flow of water from springs or streams emanating from the basin.

Putting the pieces together

Geology:

- Petroleum information
- Fracture properties
- Geophysics
- Deep test well
- 3-D geologic modeling

Climate:

- Fittstown Mesonet station
- Hydrologic budget
- Tree-ring analysis

Surface Water:

- 3 USGS gages
- Baseflow monitoring
- Rainfall-runoff modeling
- Instream flow study

Ground Water:

- Water-level monitoring
- Water chemistry
- Age-dating
- Aquifer tests
- Water use
- Ground-water modeling

Participants

U.S. Bureau of Reclamation U.S. Geological Survey Oklahoma State University University of Oklahoma Oklahoma Geological Survey

Participants

Oklahoma Climatological Survey U.S. Environmental Protection Agency The Nature Conservancy Chickasaw and Choctaw Nations National Park Service Hydrosphere Resource Consultants

Participants

Oklahoma Department of Environmental Quality Oklahoma Department of Wildlife Conservation Citizens for the Protection of the Arbuckle-Simpson Aquifer

> Municipalities Landowners

Hydrogeologic Framework

Hydrostratigraphic Units

Time- Stratigraphic Unit	Rock-Stratigraphic Unit		Hydrogeologic Unit	Model Hydrostrati- graphic Unit
Pennsylvanian to Late Ordovician	Post-Simpson Geologic Units, Undifferentiated		Upper Confining Unit	Post-Simpson
Middle Ordovician	Simpson Group	Bromide Formation Tulip Creek Formation McLish Formation Oil Creek Formation Joins Formation	Arbuckle-Simpson Aquifer	Simpson
Early Ordovician	Arbuckle Group	West Spring Creek Formation Kindblade Formation Cool Creek Formation McKenzie Hill Formation		Arbuckle- Timbered Hills
Late Cambrian		Signal Mountain Formation Butterly Dolomite Fort Sill Limestone Royer Dolomite		
	Timbered Hills Group	Reagan Sandstone		
Middle Cambrian	Colbert Rhyolite		Basement Confining Layer	Basement
Precambrian	Tishomingo Granite, Troy Granite, granodiorite, and granitic gneiss			

Helicopter Electromagnetic

Seismic Survey

3D Geologic Model

science for a changing world

Geochemical Investigation

USGS Stream Gages N Delaware Creek State of Oklahoma "shita Rive WATER **RESOURCES BOARD** the water agency Miles 8 10 012 6

Stream Monitoring

Hydroclimatic Reconstruction of the Arbuckle-Simpson Aquifer Using Tree Rings

> Aondover Tarhule Department of Geography University of Oklahoma atarhule@ou.edu

Hydroclimatic Reconstruction

- Developed a 304-year tree-ring chronology from post oak trees.
- Reconstructed precipitation and streamflow
 - to provide a longer term perspective of climatic variability than is possible with instrumental records and
 - to evaluate the risk of drought.

Reconstructed precipitation (1700-2004)

Precipitation Departure from Instrumental Mean

Years

The drought that occurs on average once every 5 years.

Precipitation Departure from 5-year Threshold

 Droughts most common 1700-1770 and 1900-1960.

Worst drought in instrumental record
 1910-11
 1700 1750 1800 1850 1900

 (1.6% recurrence).
 Droughts of 1950s rank high (3.3% recurrence).

Hydroclimatic Reconstruction Conclusions

- Multi-decadal droughts are rare.
- Droughts lasting 2 or more years occur about once every 20 years.
- Droughts lasting 1 year are most common.
- Recurrence intervals of severe droughts are relatively low.
- Period of study is representative of the last 300 years.

Arbuckle-Simpson Hydrology Study

Conducted comprehensive hydrologic investigation Greatly enhanced understanding of the hydrology

 Obtained scientific information necessary to make informed water management decisions