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Abstract

Scenedesmus sp. was grown in chemostats at a fixed growth rate () in an inorganic medium
with nitrogen to phosphorus atomic ratios (N:P) ranging from 5 to 80, to investigate the effect
of double nutrient limitation. There was no additive or multiplicative effect of the two nutrient
limitations: below the optimal cell N:P of 30, growth was determined solely by N limitation
and above 30, by P limitation. Cell N remained constant up to the optimal ratio and increased
linearly with N:P above it. The level of cell P was high at low N:P (N-limited state) but
decreased rapidly until N:P approached the optimal and remained constant at a low level at
high N:P (P-limited state).

Protein was the major fraction in which excess N accumulated under P limitation. Cell free
amino acids were a constant proportion of cell N at all N:P ratios. RNA concentration was the
same regardless of N:P, it level being determined by u independent of the type of limiting
nutrients. Cell carbon (C) concentration was higher in the P-limited than in the N-limited
state. The C fixation rate per unit chlorophyll a, however, was constant under both P- and
N-limited states because the variation in chlorophyll a content was similar to that of C.

The apparent maximum uptake rate for nitrate (V) in N- and P-limited cultures decreased
with increasing cell N or N:P. In N-limited cultures the half-saturation constant (K,) also
decreased at higher cell N or N:P. The variation of V appeared to be affected by the level of
free amino acids.

Transitions between states of nitrogen
and phosphorus limitation of phytoplank-
ton growth are common in both lakes
and coastal seawaters. Such transitions
occur seasonally in eutrophic lakes and
may be common in estuarine waters
where seawater, which is generally N
limited but P sufficient, mixes with
freshwater having relatively high N and
low P levels. Discharge of wastewaters
into a body of natural water may also ini-
tiate a transition.

Information on the effects of such a
change in nutrient limitation is scarce.
Earlier work (Rhee 1974), however, indi-
cated its importance in determining the
composition of a phytoplankton commu-
nity by influencing competition and suc-
cession. Although natural phytoplankton

1 This work was supported by National Science
Foundation grant DEB75-19519 and Environmen-
tal Protection Agency grant R-804689-01. The con-
tents of this paper were presented at an interna-
tional symposium on the use of algal cultures in
limnology (Sandefjord, Norway, 26-28 October
1976). V. Bierman, Jr., and D. Dolan tested the
growth models and B. Kusel provided technical as-
sistance.

LIMNOLOGY AND OCEANOGRAPHY

10

contain the two nutrients in an N to P
atomic ratio (N:P) of about 15 (Redfield
1958; Ryther and Dunstan 1971), I found
the optimal cellular N:P of Scenedesmus
sp. to be 30; the ratio may vary from
species to species.

Baule (1918), Verduin (1964), and
Droop (1973) suggested that growth dur-
ing such transitions was controlled in a
multiplicative manner. Later, however,
Droop (1974) showed in his experiments
on phosphate and vitamin B,; limitations
with Monochrysis lutheri that growth did
not follow a multiplicative pattern but
was regulated by the single nutrient in
shorter supply. In this study, therefore, 1
have investigated growth during the tran-
sition between the N- and P-limited
states. Emphasis was placed on changes
in cellular composition because the
growth rate (u) of phytoplankton limited
by various nutrients is a direct function of
the cellular levels of the nutrients (Cape-
ron 1968; Droop 1968; Fuhs 1969; Davis
1970; Rhee 1973; Paasche 1973). Since
two nutrient-limited states were involved
in this study, the kinetics of N-limited
growth and N uptake were also investi-

JANUARY 1978, V. 23(1)



Dual nutrient limitation

gated to provide baseline information to
be used with previous findings on
P-limited growth and P uptake (Rhee
1973, 1974).

Materials and methods

Organism and culture medium—An
axenic culture of Scenedesmus sp. was
grown in a defined inorganic medium as
reported by Rhee (1973, 1974). Nitrate
and orthophosphate were the sole
sources of N and P. For growth studies at
various N:P, the phosphate concentration
was kept constant at 3 uM while the ni-
trate levels were adjusted between 15 and
240 uM. For the investigation of N-
limited growth, nitrate and phosphate
concentrations were reduced to 21 and 10
uM.
Cells were counted in a hemacytome-
ter. For the double nutrient experiments
cell volume was calculated by the
geometric formula relating volume to cell
shape.

N-limited growth—Four identical
chemostats were made from 1-liter (work-
ing capacity) Bellco spinner flasks. Each
chemostat had a water jacket through
which constant temperature water was
circulated at 20°+ 1°C by a Neslab
cooler-circulator. Cultures were stirred
with a magnetic impeller unit on a Bellco
nonheat-generating magnetic stirrer. Air
was passed first through a saturated zinc
chloride solution to eliminate traces of
ammonia, then through distilled water to
saturate it with moisture, and finally
through a series of bottles filled with
sterile glass wool. Cultures were aerated
at about 1 liter min™. Continuous illumi-
nation of about 0.082 ly min~! was pro-
vided by white fluorescent lamps coated
with Uvinul D-49 (see Rhee 1974). Then
cultures were grown at various dilution
rates. When a steady state was reached,
cells were harvested; the cells and
supernatant were stored at —20°C until
analysis.

Growth at various N:P—Four Bio-Flo
chemostats (model C30), each with a
working volume of 600 ml, were used.
Continuous illumination at about 0.085 ly
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min~! was provided. The alga was grown
at a constant dilution rate of 0.59 d™, or
relative growth rate of 0.437 (u/i, where
M is the maximum growth rate). The
variation in dilution rate was <4%. Aera-
tion was as for the N-limited culture, ex-
cept that the rate was about 500 ml min~.

Nitrate uptake experiments—The N
uptake study was carried out in a manner
similar to the P uptake experiments
(Rhee 1973). Aliquots (50 ml) of the
steady state culture from N-limited
chemostats were delivered into a series
of 125-ml Erlenmeyer flasks that con-
tained various concentrations of nitrate.
The flasks were shaken on a rotary shaker
under the same illumination as for
N-limited growth studies. Uptake was
measured at 20-min intervals by filtering
10 ml of suspension through a membrane
filter (Millipore, pore size 0.45 um) that
had been washed with 30 ml of double-
distilled water and determining the
amount of nitrate left in the filtrate. Data
were analyzed by a nonlinear regres-
sion program (Rhee 1973).

The rate of N uptake under P limitation
was calculated from the 1973 data accord-
ing to

V =(A — B)D x cell No.™}, (1)

where V is the apparent maximum uptake
velocity; A, the nitrate provided in the
inflow medium; B, the residual nitrate
level at a steady state; and D, the dilution
rate. This study had been done under a
12:12 light-dark cycle, with the light at
0.084 ly min™.

Carbon (C) uptake was calculated from
cell C concentration by the equation

Vc = l“'qc, (2)

where V. is the C fixation rate, and g., the
cell C content.

Analytical methods—Dissolved or-
ganic N was determined by the micro-
Kjeldahl method (Strickland and Parsons
1972) and dissolved organic P by the
method of Murphy and Riley (1962) after
persulfate digestion (Menzel and Corwin
1965). The digestion step was omitted for
analysis of orthophosphate. Nitrate, ni-
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Fig. 1. Carbon fixation rate per cell (A) and per unit chlorophyll (B) as a function of growth rate (u) in a
culture limited in a single nutrient (N). Chlorophyll was measured in arbitrary units representing in vivo

fluorescence.

trite, and ammonia were measured in an
AutoAnalyzer (Canelli 1976). Total cell N
and P were calculated from the amounts
utilized by a steady state culture.

Surplus P was determined as described
by Rhee (1973) and total cell C by the
method of Menzel and Vaccaro (1964).
Chlorophyll ¢ was measured in vivo
using a Turner fluorometer according to
Strickland and Parsons (1972) because of
difficulty in extracting it with solvents.
Its concentration was expressed in arbi-
trary units.

Samples for free cell nitrate and am-
monia were prepared by breaking cells in
a French Pressure Cell at 1.4 x 10" kg m™2
at 5°C followed by filtration through a
membrane filter (Millipore, pore size
0.22 pum). The trichloroacetic acid (TCA)
extraction method (Eppley and Coats-
worth 1968), performed without breaking
cells, was found unsatisfactory.

Free amino acids were extracted with
boiling water (Dawson 1965) and assayed
by the ninhydrin method of Yemm and
Cocking (1955). L-Leucine was used as
the standard over the range 0.2-25ug
ml2,

RNA was determined by the orcinol
method (Schneider 1960) in a sample
prepared as follows: Cells were extracted
with 10% cold TCA, and the supernatant
was discarded. The residue was sus-
pended in 2 ml of 1 N HCIO, and sub-
sequently heated at 90°C for 30 min. The
mixture was centrifuged at 12,100 x g for
30 min and washed twice with HClO,.
The washings were combined with the
supernatant, and the mixture was left
overnight at —20°C. The standard was
prepared using yeast RNA hydrolyzed in
1 N HCIO..

DNA was extracted with 1 N HCIO, at
70°C for 15 min and measured by the col-
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Fig. 2. Concentration of cell protein, RNA, free amino acids, lipid N, and DNA as a function of growth

rate (1) in a N-limited culture.

orimetric method of Burton (1956). Her-
ring sperm DNA was used as the stan-
dard. Protein was analyzed by the
method of Price (1965) after extraction
with hot alkali. The standard was serum
albumin. Lipid was extracted sequen-
tially with alcohol, alcohol-ether (3:1),
and chloroform-methanol (2:1) and mea-
sured for N by the micro-Kjeldahl
method.

Results

N-limited growth—Cell numbers at
steady states decreased linearly with u,
and no nitrate or dissolved organic N
could be detected in the medium. There-
fore u is related to cell N by a saturation
curve similar to that found by other inves-
tigators (e.g. Caperon 1968).

Cell C concentration was constant re-
gardless of u and thus the rate of C fixa-
tion increased linearly with u (Eq. 2, Fig.
1A). Since the cellular content of chloro-
phyll a also increased linearly with u,
the C fixation rate per unit chlorophyll
a (assimilation number) was uniform at
all dilution rates (Fig. 1B). Therefore the
higher rate of C fixation in faster growing
cells is related to an increase in the level
of chlorophyll a.

Cell protein, lipid N, RNA, and free
amino acids measured as amino N were
all related to u by a saturation function
(Fig. 2). In P-limited cells the P level
in RNA also showed such a relationship
(Rhee 1973). DNA, however, appeared to
increase linearly with p (Fig. 2). In
studies of P limitation, DNA (measured
as P) was invariant with u when ex-
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Fig. 3. Steady state cell numbers growing at a
fixed growth rate of 0.59 d™* (relative growth rate of
0.437) and changes in cell volume in a medium with
varying N:P. (Cell N:P ratios are same as those in
inflow medium, because all N and P in culture
medium was consumed. N:P ratios in Figs. 5-9 are
therefore cell N:P ratios as well as N:P ratios in a
chemostat reservoir.)

pressed per unit cell volume (Rhee 1973).
In the present study I could not calculate
its content per unit volume because of
the lack of volume data for the N-limited
culture, but microscopic observation dur-
ing daily cell counts of chemostat sam-
ples showed larger cell volumes at higher
dilution rates. Since cell nitrate and am-
monia levels were too low to be measured
accurately because of inadequate sample
size, their relation to u was difficult to
ascertain.

Growth at various N:P ratios—The
number of cells in steady state cultures
grown in media containing varying N:P

Rhee

ratios increased linearly with N:P up to
30 and then abruptly leveled off (Fig. 3).
Since N:P was varied by changing only
the nitrate concentrations, the propor-
tional increase indicates N limitation
below an N:P of 30, and the leveling off
shows P limitation above this ratio. This
confirms the optimal ratio of 30 found by
P uptake kinetics (Rhee 1974). The tran-
sition between N- and P-limited states is
quite sharp, indicating that there is no
multiplicative or additive effect. A test of
the single-nutrient limitation and of the
multiplicative model with the data for in-
tflacellular P and N contents also confirms
this.

The multiplicative model is expressed
as

M _ (gp = qop)
Um  Ke+(gr— qop)

(gn — qon)
Kx+(gx— qon)
3)
Growth under single-nutrient limitation
is calculated as

k___ (gp—qo)

wm  Kp+ (gp— qop) @
when P is limiting, and as

p o (gn—qw) (5)

tm  Kn+ (gn— qon)

when N is limiting, where Kp and Ky are
half-saturation concentrations of cell N
and P; gp and gy, cell P and cell N levels;
and gop and gy, minimum cell P and cell
N contents.

The hypotheses were tested by cal-
culating u/w, for each of 16 N:P and then
determining by a t-test whether the cal-
culated values were significantly differ-
ent from the experimentally measured
value of 0.437 + 0.016 (mean = SD).

Since the half-saturation constants are
equal to the minimum cell contents of
limiting nutrients (Droop 1968; Rhee
1973), the values of gop and g deter-
mined in my previous work (1973, 1974)
were used as Kp(1.64 x 107° uM cell™)
and Kx(45.40 x 107° uM cell™).

The mean value of w/u, was estimated
to be 0.286 + 0.027 with 95% confidence
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Fig. 4. Total cell N and P concentration as a
function of N:P in inflow medium.

when the multiplicative model was used.
With the single-nutrient limitation equa-
tions, 0.428 = 0.072 was obtained for
N:P =< 30 and 0.428 + 0.013 for N:P = 30.
The t-test indicates the rejection of the
multiplicative hypothesis and the accep-
tance of a single-nutrient limitation
model at the 95% confidence level.

Ky and Ky values determined by
curve-fitting Eq. 4 and 5 to the data were
1.62 + 0.07 x 107 uM cell™! and 45.70 =
5.00 x 107® uM cell™, not significantly
different from the measured qop and gox
values. This supports the validity of sub-
stituting qop and gon for Kp and Ky and
may also be taken as additional evidence
for the single-nutrient limitation model.

Cell volume—Cell volume increased
with N:P following two different linear
functions, one below the optimal ratio
and the other above it (Fig. 3).

Total cell N and P—No residual inor-
ganic or dissolved organic N or P was de-
tected in the medium at any N:P
examined, indicating excess accumula-
tion of both nutrients. Since all nitrate
and phosphate in the medium was con-
sumed, the cellular N:P must have been
identical to the ratio in the medium.

Cell N concentrations in N-limited
states with excess phosphate were always
the same, about 86 x 10™° uM cell™
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Fig. 5. Carbon fixation rate expressed as
cell"'d~Y(A), chlorophyll a concentration per cell
(B), and carbon fixation rates per unit chlorophyll a
(C) as a function of cell N:P.

(1.2 x 1078 ug N liter™! cell™) indicating
that in this state cell N concentrations are
determined by p regardless of the N:P of
the medium. In P-limited states where N
was in excess, the cell P content remained
constant at 2.9 X 107® uM cell™ (0.09 x
1078 ug P liter™! cell™), indicating that in
these states cell P concentration was
dictated by wu without respect to the
amount of excess N (Fig. 4). The amounts
of cell N and P above these constant levels
were therefore considered excess ac-
cumulation. The ratio of cell N in N-
limited states to cell P in P-limited states
was also 30, confirming the optimum N:P
found above.

C fixation and chlorophyll a—The cal-
culated rate of C fixation based on cell C
contents was constant at low N:P, but as
the ratio approached the optimum the
rate increased rapidly and then leveled
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off at a higher level at high N:P (Fig.
5A). Chlorophyll a concentrations show
similar sigmoid changes (Fig. 5B). There-
fore, when the C fixation rate is ex-
pressed per unit chlorophyll a, the as-

20

PROTEIN N ( x 10764q - cell™)
=

LIPID N (x1077ug N-cell™)

(0] 20 40 60 80
N:P ATOMIC RATIO

Fig. 7. Protein N and lipid N concentration as a
function of N:P.

similation number is the same at all N:P
(Fig. 5C). As in the N-limited culture ex-
periments, this shows that the faster C fix-
ation rate in the P-limited state is related
to the higher concentration of chlorophyll
a.
Cell composition—Cells grown at vari-
ous N:P ratios show protein content
changing in a manner similar to that of
cell N (compare Fig. 6 with Fig. 4). N
accounts for about 16% of protein by
weight (Conn and Stumpf 1966) and with
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cell volume and RNA concentration per cell as a
function of cell N:P.

this factor protein N can be calculated.
The proportion of protein N to total cell N
averages 44% in the N-limited state,
while in the P-limited state, the propor-
tion increases with N:P up to 70% or
more (Fig. 6). This indicates that in the
P-limited state, most excess N accumu-
lates in the protein fraction. In the
N-limited state, protein N concentrations
are determined by p independent of N:P
in the inflow medium or of cell P concen-
trations.

Lipid N remains constant in the
N-limited state and increases in the
P-limited state in 2 manner similar to that
of protein (Fig. 7). Lipid N, however, ac-
counts for only a small fraction of the total
N, its maximum at N:P = 70 being about
10% (Fig. 6).

DNA concentrations in N-limited states
increase slowly in proportion to N:P up
to the optimum ratio and more rapidly
above it (Fig. 8, upper). As seen in Fig.
8 (middle panel) and reported earlier
(Rhee 1973), the DNA per unit cell
volume is the same at all N:P. Accord-
ingly, as a proportion of the total cell N, it
decreases as N:P becomes larger (Fig. 6).
RNA levels were the same at all N:P (Fig.
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Fig. 9. Free amino acid N as a function of cell
N:P.

8, lower). This indicates that cell RNA
concentration reflects u independent of
the type of limiting nutrient (see discus-
sion).

Free amino acid accumulation follows
a pattern similar to that of protein, lipid
N, and total cell N (Fig. 9). Unlike protein
and lipid N, however, it is a constant pro-
portion of total cell N at a given u at all
N:P (Fig. 6). If w is allowed to vary in
N-limited growth experiments, the pro-
portion of N that is free amino acid in-
creases with u: free amino acid N is only
3.3% of cell N at w/py, = 0.18 but 6.3% at
/e = 0.61. (The generally low values in
N-limited culture are due to culture con-
ditions different from those in N:P exper-
iments.)

The changes in free cell nitrate and
ammonia could not easily be observed
because the levels were too low to be
measured accurately, but the level of
each seemed to be <0.8% of total cell N.

The accumulation of surplus P is dra-
matically higher in the N-limited than in
the P-limited state. This is consistent
with the results obtained from my previ-
ous investigation (Rhee 1974). Surplus P
decreases rapidly until N:P approaches
the optimum. At ratios higher than the
optimum, it remains at a uniform level
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Table 1. Half-saturation constant (K,,) and max-
_ imum uptake rate (V) for nitrate uptake in N-limited
T 60r culture.
8 *
i L Wup® Cell N:P Kt vt
Y (M) (x 107%uM-ce117L
¢ .min~1)
e 0.35 5.23 8.421x1.570 0.325%0.034
x 0.44 5.52 5.607:0.350  0.237%0.008
a | 0.51 5.64 3.343%0.479  0.1780.010
9 0.57 5.77 2.9140.286 0.164%0.002
T *y = .day-1
e 20 Up=1l.35-day .
(% tValues shown are mean * standard error.
S T T S TR S (Fig. 11). In contrast, the K,, for P uptake
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Fig. 10. Surplus P concentrations as a function
of cell N:P.

determined by the P-limited growth rate
(Fig. 10).

Nitrate uptake—The two maximum
uptake velocity curves in Fig. 11 repre-
sent the results obtained with N-limited
and P-limited cultures. The two curves
are not quantitatively comparable be-
cause of different growth conditions, as
described above. Nonetheless, it is im-
portant to note that in both cases the ap-
parent maximum uptake rate (V) is in-
versely proportional to the cell N:P. The
change in N:P in an N-limited culture is
caused by higher cell N concentrations at
higher u because the cell P level is the
same at all . In a P-limited culture, on
the other hand, the change in N:P is the
result of increasing cell P levels at higher
K, since in this culture the cell N content
remains uniform except at very low dilu-
tion rates (see table 1: Rhee 1974). It is
very likely, therefore, that N uptake in-
volves a feedback mechanism by certain
N compounds, much as P uptake is af-
fected by acid-soluble inorganic poly-
phosphates (PP;) (Rhee 1974). A plot of
V against cell free amino acids gives a
negative linear slope (Fig. 12), suggest-
ing that free amino acids are directly or
indirectly involved in or reflect the regu-
latory mechanism of nitrate uptake (see
discussion).

The half-saturation constant (K,) for
nitrate uptake also decreases with N:P

by the same organism is constant at all u
(Rhee 1973). With the present data it is
difficult to determine if K,, values are
also related to any intracellular com-
pounds, because of the relatively large
st)andard errors in estimating them (Table
1).

Discussion

N:P and growth—It is clear that there
is no growth limitation by N and P simul-
taneously. Growth is limited by P or N on
either side of the optimum N:P. Droop
(1974) found no multiplicative effect of
phosphate and vitamin B;, limitations on
the growth of M. lutheri, which is strictly
controlled by the single nutrient in short-
er supply. Droop’s experimental approach
was different from that used here; he
used dilution rates as independent vari-
ables in media for four different P:By,
ratios. Both his and my results appear to
agree with Liebig’s law of the minimum.

The optimal cellular N:P may be
species-specific. If this is so, the differ-
ence in this value would have great
ecological importance. For example, in
the same nutrient environment the
growth of some species may be limited
by one nutrient, while others are regu-
lated by another. The severity of each
limitation would determine the outcome
of competition, and the interval between
the ratios would determine the range in
which coexistence is possible (Table 2).
Competition models based on the kinetic
constants for grwoth have also been used
successfully to predict competitive ex-
clusion and coexistence between two
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Fig. 11. Change in apparent maximum uptake velocity (V) for nitrate as a function of cell N:P. Values

below the ratio 10 were obtained with a N-limited culture and those above it were calculated using data
from a P-limited culture (Rhee 1973). Numbers next to open circles are relative growth rate (u/u). Scale of
N:P between 5 and 6 is expanded in inset. Culture conditions for N-limited and P-limited studies were

different (see text).

species (Titman 1976; Tilman 1977).
There are various internal nutrient pools;
the size of a pool may vary from species to
species, restricting the use of models de-
rived from growth kinetics (as also
pointed out by Tilman).

Competition and coexistence based on
optimal cellular N:P may explain the
seemingly synergistic effects of simul-
taneous N and P addition frequently en-
countered in bioassay experiments (e.g.
Fuhs et al. 1972). If the mixed popula-
tions in a bioassay are in the coexistence
range in Table 2, addition of P alone to
the medium will shift N:P in favor of or-
ganism A, thus competitively eliminating
B. The addition of N only, on the other
hand, will favor B with the elimination of
A. The simultaneous addition of both N
and P, therefore, would produce more

biomass than the sum of the yields pro-
duced by the single addition of P or N.
Although there is no proof yet of the
species-specificity of optimal N:P, Til-
man’s data (1977) suggest that the optimal
P:Si ratio differs in two competing diatom
species.

Determination of optimal N:P may be
difficult because of the nutrient pools.

Table 2. Competitive exclusion and coexis-
tence.

N:P 0 10 20 30
Organism AT P-limited Organism B
dominant A and N- dominant

limited B
coexist

Optimal N:P Optimal N:P
for A for B
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Fig. 12. V and K, values of nitrate uptake as a
function of cell free amino acid concentrations.

For the same reason, the interpretation of
N:P ratios found in batch-culture work
should be made with extreme care. Op-
timal N:P ratios of ecologically important
species of phytoplankton representing
various taxa are being investigated in our
laboratory.

N:P and residual N and P—The mini-
mum cellular N:P observed in Scene-
desmus sp. was 4 under N-limited condi-
tions, and the maximum was 142 or more
under P-limited conditions (Rhee 1974).
It is therefore not surprising that there
was no detectable residual N and P in the
culture medium at the inflow N:P used in
the present study (5 to 80). It is probably
that residual N or P becomes detectable
only when N:P in a medium is lower than
the minimum or higher than the
maximum cellular N:P. The wide range
of cellular N:P indicates that cellular nu-
trient concentrations are better indicators
of nutrient limitation than nutrient levels
in the surrounding medium when op-
timum nutrient ratios are known.

Protein—Among the changes in chem-
ical composition measured here, those of
protein, RNA, and free amino acids are of
special interest. Under conditions of N
sufficiency, protein, which accounts for

Rhee

more than 70% of the total cell N, appears
to be the major reservoir for excess N.
The observation that it is a greater pro-
portion of total cell N in the P-limited
state (Figs. 6 and 7) supports this in-
terpretation. Other supporting evidence
is that under nutrient stress, or in non-
growing bacteria and fungi, the turnover
of protein becomes faster (Mandelstam
1963; Pine 1972), and physiological adap-
tation and growth become dependent
upon the turnover rate. For example, in
P-starved cells, amino acids produced as
the result of protein turnover or break-
down are reincorporated for the synthesis
of alkaline phosphatase by increased dif-
ferential rate of synthesis of this enzyme
(Halvorson 1962). In higher plants such
amino acids are largely converted to car-
bon dioxide (Oak and Bidwell 1970).
BRNA—A close correlation between
RNA concentration and u has been well
established for many bacteria (Neidardt
and Magasanik 1960; Maalge and Kjeld-
gaard 1966; Maalge and Kurland 1963;
Smith 1969). In a synchronous culture
of Chlorella, RNA synthesis was also
found to control cell division (Lorenzen
1970). Such findings were made mostly
under conditions of single-nutrient limi-
tation or in unrestricted medium. It is
therefore very interesting to find that
RNA concentrations reflect u indepen-
dent of N:P in the medium and therefore
irrespective of the limiting nutrient. Data
from a study of Enterobacter aerogenes
under double-nutrient limitation (Cooney
et al. 1976) showed similar results, al-
though the investigators failed to point
it out. At any given u in that study,
RNA concentration appeared unchanged
whether C, N, P, or a combination of C,
N, and P was limiting. (The criterion of
limitation used was not growth but
change in macromolecular composition.)
Findings such as these may enable us to
use measurements of RNA to estimate
physiological conditions of natural popu-
lations without precise knowledge of the
nature of the limiting nutrient. This could
be even more significant in light of the
possible species-specificity of optimal
N:P and the difficulty of determining it
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for a great number of species. RNA can be
determined by either biochemical or
cytochemical methods. A cytochemical
method developed by Fuhs and Chen
(1974) may prove valuable for the mea-
surement of RNA in individual species of
mixed natural populations.

In using RNA as a measure of physio-
logical conditions, one must remember
that it responds in two different ways to
environmental changes, such as tempera-
ture: by changing the rate of protein syn-
thesis without modifying its cellular
levels, or by changing its own cellular
concentrations. The second type of re-
sponse seems to occur under environ-
mental changes which last many genera-
tions. In the steady state cells of a
chemostat, RNA content varies with tem-
perature and pH (Tempest and Hunter
1965). The first type of adaptation has
been observed in batch culture work;
when the u of cells in an unrestricted
medium was altered by temperature, the
cellular RNA level remained constant
(Schaechter et al. 1958; Fuhs and Chen
1974) but the rate of protein synthesis
would probably vary.

Free amino acids—The amino acid
pool is a sensitive indicator of cellular
metabolism, particularly of N supply. Itis
extremely variable and markedly depen-
dent on the nutritional composition of a
medium, the levels of limiting nutrient,
u, and environmental conditions (Cowie
1962; Tempest et al. 1970; Brown and
Stanley 1972; Brown et al. 1972, Drozd et
al. 1972). In protein synthesis the free
amino acids in the pool are obligatory in-
termediate forms of N (Britten and
McClure 1962). Indeed, Cowie (1962)
found a precursor-end product relation-
ship between pool amino acids and cell
protein. The size of the pool, however, is
not related to the rate of protein synthesis
(Dawson 1965). The difference in the
contribution of protein and free amino
acids to the total cell N observed in the
present study (Fig. 6) agrees with these
findings.

The uniform quantitative relationship
of free amino acids to total cell N is of
considerable interest because either the
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amino acid pool or the ratio of free amino
N to cell C may be used as a sensitive
indicator of N depletion, if N limitation is
known to exist. One can also substitute
the measurement of free amino acids for
that of total cell N. Such substitution
would be desirable in cases where de-
trital N prevents an accurate measure-
ment of the particulate N of living or-
ganisms.

In Escherichia coli the rate of RNA
synthesis has a direct relationship with
the availability of free amino acids. One
explanation for this mechanism is that
transfer RNA (tRNA) uncharged with
amino acids acts as a repressor of RNA
synthesis. In an N-rich medium tRNA
tends to be saturated with amino acids,
more or less completely derepressing
RNA synthesis, but in an N-limited
medium the relative unavailability of
amino acids leaves a large portion of the
RNA unadenylated (Stent and Brenner
1961; Maalge and Kjeldgaard 1966).
Under conditions of N limitation, there-
fore, free amino acid levels reflect u and
are the equivalent of the levels of PP; or
surplus P in P limitation (see Rhee 1973).

Carbon fixation—Although cell C con-
centrations were invariant at all dilution
rates in N-limited culture, the C fixation
rate per cell had a positive relationship
with . Such increases in the photo-
synthetic C fixation rate have also been
observed with Scenedesmus abundans
(Giddings 1975). Assimilation number in
these organisms and in Thalassiosira
pseudonana (Eppley and Renger 1974)
showed no variation with respect to u. A
synchronous culture of Scenedesmus
(Myers and Graham 1975) showed an es-
sentially unvarying size of the photo-
synthetic unit (the yield of oxygen per
chlorophyll per light flash) throughout its
life cycle. On the other hand, marked
changes of the assimilation number were
reported by Thomas and Dodson (1972),
Caperon and Meyer (1972a), and Cape-
ron and Zieman (1976). Diel variations of
the assimilation number have also been
found in marine diatoms (Eppley et al.
1971; Eppley and Renger 1974).

Growth studies at various N:P ratios
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show identical assimilation numbers, but
P-limited cells have higher concentra-
tions of chlorophyll @ and thus higher cell
C contents than do N-limited cells. This
indicates that under conditions of N limi-
tation the proportion of N diverted from
chlorophyll a synthesis to other pro-
cesses is much greater than the propor-
tion of P diverted under P limitation.
Consequently, N limitation impairs chlo-
rophyll @ synthesis much more than P
limitation. Bongers (1958) and Fogg
(1959) also reported that in N limitation
the amount of chlorophyll per cell de-
creases faster than the total cell N.

Nitrate uptake—The variation of V
seems to be related to free amino acid
concentrations (Fig. 12) by way of an
amination process, or by the rate of pool
amino acids utilization, or both. In
Anabaena cylindrica, nitrate, nitrite, and
hydroxylamine reductase systems are re-
pressed by ammonia and glutamate (Hat-
tori 1962). In certain marine algae, nitrate
is quantitatively reduced to ammonia in
the absence of carbon dioxide (Brown et
al. 1974), and therefore, in the light, the
rate-limiting step for nitrate assimilation
is ammonia incorporation. In Chlorella
an exogenous supply of certain amino
acids, including glutamate, represses ni-
trate reductase (Abdullah and Ahmed
1975). Nitrogenase activity in N,-fixing
organisms appears to be regulated by free
cell ammonia (Dharmawardene et al.
1972). Indirect but strong evidence of the
dependence of V on free amino acid con-
centration is that sulfur uptake in
Chlorella vulgaris varies positively with
the level of sulfur amino acids in the
pool (Passera and Ferrari 1975). Conover
(1976) and Eppley and Renger (1974) also
suggested that a critical rate-limiting step
in N uptake is its incorporation into or-
ganic compounds. Lui and Roel (1972)
suggested that in ammonia utilization the
intracellular ammonium level and car-
bohydrate reserve regulate uptake. In the
present study, cell ammonia levels were
too low for accurate measurement, and
therefore no meaningful relationship be-
tween these levels and nitrate uptake can
be ascertained.
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Two enzyme systems that mediate
amination have been reported in a
marine bacterium (Brown and Stanley
1972; Brown et al. 1974) and recently in a
marine diatom (Falkowski and Rivkin
1976). The two systems differ markedly
in their K, values. One is glutamic de-
hydrogenase (GDH) which aminates 2-
oxoglutarate to glutamic acid. The other
is a two-step process: synthesis of
glutamine by glutamine synthetase (GS)
and the reductive transfer of amide to
2-oxoglutarate by glutamine (amide)-2-
oxoglutarate amino-transferase (GOGAT).
In the bacterium the K, for GDH is
10 mM; the value for GS is about 20-
fold smaller. The values in the diatom
are 28 mM for GDH and 29 uM for GS.
The two enzyme systems thus probably
operate at different levels of free cell
ammonia. GS has been reported in blue-
green algae (Dharmawardene et al. 1973;
Haystead et al. 1973) and in green algae
(Loomis 1959). Its existence and possible
importance in ammonia incorporation
were also reported in C. vulgaris and
Chlorella pyrenoidosa (Reisner et al.
1960; Bassham and Kirk 1964) and in
some higher plants (Fowden 1965).

It is not possible to elucidate the
mechanism of nitrate uptake in
Scenedesmus sp. using only the present
data. Further investigation on enzymatic
and cellular levels is under way to find
the mechanism regulating its uptake.
Solomonson and Spehar (1977), in an im-
portant paper that appeared just as this
manuscript was being submitted, pro-
posed a model for feedback control of nit-
rate uptake by free intracellular ammonia
and amino acids.

Variations in V and K,, similar to those
found here were indicated for S. abun-
dans (Giddings 1975), and a decline in V
with increasing u was found in T.
pseudonana (Eppley and Renger 1974).
On the other hand, Caperon and Meyer
(1972b) reported a positive slope of V
with w in T. pseudonana, and Laws and
Caperon (1976) found no variation of V in
M. lutheri. It should be noted, however,
that the last two results were obtained by
the perturbation technique, which disre-
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gards the feedback or regulatory effect of
intracellular N compounds.

In summary, I have found the growth of
Scenedesmus sp. to be limited, not in a
multiplicative or additive manner, but in
a threshold pattern by the single nutrient
in shorter supply. Possible differences in
the optimal N:P of various organisms,
therefore, may be a basis for coexistence
and competitive exclusion. In nutrient
limitation not only are the absolute con-
centrations of limiting nutrients impor-
tant but also their levels relative to other
nutrients. RNA concentrations were in-
dependent of which nutrient was limit-
ing, but they were a function of u and
may therefore be a potentially useful pa-
rameter in estimating u of natural popula-
tions.

In the P-limited state, most excess N
accumulated in the protein fraction and
increased linearly with N:P. Free amino
acids within a cell also increased with
N:P under N-sufficient conditions but
were a constant proportion of the total
cell N. Thus the level of free amino acids
appears to be a good potential indicator of
N-limited growth rate and might be used
to estimate particulate N concentrations
of living organisms in cases where detri-
tal N prevents accurate measurement of
total cell N. Levels of cell C were higher
in the P-limited than in the N-limited
state, but because these levels changed
in a manner similar to that of chlorophyll
a, assimilation number remained in-
variant with respect to the type of limit-
ing nutrient. Assimilation number was
also independent of u. The K,, for nitrate
uptake in N-limited cultures appeared to
decrease with u. V also decreased with u
in both N- and P-limited cultures; the de-
crease appeared to be related to the level
of free amino acids.
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