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FOREWORD

The U.S. Geological Survey (USGS) is committed to providing the Nation with accurate and timely scientific information that helps
enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral
resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that
is safe for drinking and recreation and suitable for industry, irrigation, and habitat for fish and wildlife. Population growth and increasing
demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-
term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and
local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawga). The NAWQA
Program is designed to answer: What is the condition of our Nation's streams and ground water? How are conditions changing over
time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most
pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA
Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA
Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the
Nation's river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawga/studyu.html).

In the second decade of the Program (2002—2012), a major focus is on regional assessments of water-quality conditions and trends.
These regional assessments extend the findings in the Study Units by filling critical gaps in characterizing the flow and quality of
surface water and ground water, and by determining trends at sites that have been consistently monitored for more than a decade. In
addition, the regional assessments continue to build an understanding of how natural features and human activities affect water qual-
ity, and establish links between sources of contaminants, the transport of those contaminants through the hydrologic system, and the
potential effects of contaminants on humans and aquatic ecosystems. Many of the regional assessments employ modeling and other
scientific tools, developed on the basis of data collected at individual sites, to help extrapolate and forecast conditions in unmonitored,
yet comparable areas within the regions. The models thereby enhance the value of our existing data and our understanding of the
hydrologic system. In addition, the models are useful in evaluating various resource-management scenarios and to predict how our
actions, such as by adjusting nonpoint and point sources of contamination, converting land use, and altering flow and (or) pumping
regimes, are likely to affect water conditions within a region.

Other activities planned during the second decade include continuing national syntheses of information on pesticides, volatile organic
compounds (VOCs), nutrients, and selected trace elements; and continuing national topical studies on the fate of agricultural chemicals,
effects of urbanization on stream ecosystems, nutrient enrichment, bioaccumulation of mercury in aquatic organisms, and transport of
contaminants to public-supply wells.

The USGS aims to disseminate credible, timely, and relevant science information to inform practical and effective water-resource
management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and
information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our
Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of interest. External
coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation's water resources. The
NAWQA Program, therefore, depends on advice and information from other agencies—Federal, State, regional, interstate, Tribal, and
local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions
are greatly appreciated.

Robert M. Hirsch
Associate Director for Water
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Trends In Nutrient and Sediment Concentrations and
Loads In Major River Basins of the South-Central United

States, 1993-2004

By Richard A. Rebich and Dennis K. Demcheck

ABSTRACT

Nutrient and sediment data collected at 115 sites by
Federal and State agencies from 1993 to 2004 were analyzed
by the U.S. Geological Survey to determine trends in concen-
trations and loads for selected rivers and streams that drain
into the northwestern Gulf of Mexico from the south-central
United States, specifically from the Lower Mississippi, Arkan-
sas-White-Red, and Texas-Gulf Basins. Trends observed in
the study area were compared to determine potential regional
patterns and to determine cause-effect relations with trends
in hydrologic and human-induced factors such as nutrient
sources, streamflow, and implementation of best management
practices. Secondary objectives included calculation of loads
and yields for the study period as a basis for comparing the
delivery of nutrients and sediment to the northwestern Gulf of
Mexico from the various rivers within the study area. In addi-
tion, loads were assessed at seven selected sites for the period
1980-2004 to give hydrologic perspective to trends in loads
observed during 1993-2004.

Most study sites (about 64 percent) either had no trends
or decreasing trends in streamflow during the study period.
The regional pattern of decreasing trends in streamflow during
the study period appeared to correspond to moist conditions
at the beginning of the study period and the influence of three
drought periods during the study period, of which the most
extreme was in 2000.

Trend tests were completed for ammonia at 49 sites,
for nitrite plus nitrate at 69 sites, and for total nitrogen at
41 sites. For all nitrogen constituents analyzed, no trends
were observed at half or more of the sites. No regional
trend patterns could be confirmed because there was poor
spatial representation of the trend sites. Decreasing trends
in flow-adjusted concentrations of ammonia were observed at
25 sites. No increasing trends in concentrations of ammo-
nia were noted at any sites. Flow-adjusted concentrations
of nitrite plus nitrate decreased at 7 sites and increased at
14 sites. Flow-adjusted concentrations of total nitrogen
decreased at 2 sites and increased at 12 sites. Improvements
to municipal wastewater treatment facilities contributed to the
decline of ammonia concentrations at selected sites. Notable
increasing trends in nitrite plus nitrate and total nitrogen at
selected study sites were attributed to both point and nonpoint

sources. Trend patterns in total nitrogen generally followed
trend patterns in nitrite plus nitrate, which was understandable
given that nitrite plus nitrate loads generally were 70-90 per-
cent of the total nitrogen loads at most sites. Population data
were used as a surrogate to understand the relation between
changes in point sources and nutrient trends because data from
wastewater treatment plants were inconsistent for this study
area. Although population increased throughout the study
area during the study period, there was no observed relation
between increasing trends in nitrogen in study area streams
and increasing trends in population. With respect to other
nitrogen sources, statistical results did suggest that increas-
ing trends in nitrogen could be related to increasing trends

in nitrogen from either commercial fertilizer use and/or land
application of manure.

Loads of ammonia, nitrite plus nitrate, and total nitrogen
decreased during the study period, but some trends in nitro-
gen loads were part of long-term decreases since 1980. For
example, ammonia loads were shown to decrease at nearly all
sites over the past decade, but at selected sites, these decreas-
ing trends were part of much longer trends since 1980. The
Mississippi and Atchafalaya Rivers contributed the high-
est nitrogen loads to the northwestern Gulf of Mexico as
expected; however, nitrogen yields from smaller rivers had
similar or higher yields than yields from the Mississippi River.

Trend tests were completed for orthophosphorus at 34
sites and for total phosphorus at 52 sites. No trends were
observed in about 57 percent of all phosphorus trend analyses
attempted. Similar to nitrogen, no regional patterns could be
confirmed because there was poor spatial representation of the
trends sites. Flow-adjusted concentrations of orthophosphorus
decreased at 10 sites and increased at 7 sites. Flow-adjusted
concentrations of total phosphorus decreased at 6 sites and
increased at 17 sites. It was understandable that trend patterns
in total phosphorus did not follow trend patterns in orthophos-
phorus given that orthophosphorus loads accounted for about
only 20-30 percent of the total phosphorus load at comparable
sites. Trends in population data were inversely related to
trends in flow-adjusted total phosphorus; therefore, trends in
population were not considered a controlling factor to explain
trends in total phosphorus. No relation was observed between
phosphorus from fertilizer use and either orthophosphorus or
total phosphorus trends. However, statistical results did sug-
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gest that increasing trends in both orthophosphorus and total
phosphorus could be related to increasing trends in phosphorus
from land application of manure.

There were more decreasing trends than increasing trends
in phosphorus loads during the past decade, most of which
were unique to the recent decade and not part of long-term
decreases since 1980. Similar to nitrogen loads, the Missis-
sippi and Atchafalaya Rivers contributed the highest phos-
phorus loads to the northwestern Gulf of Mexico as expected;
however, phosphorus yields from smaller rivers were similar
to or higher than yields from the Mississippi River.

Trend analyses of suspended-sediment data were
attempted at 39 sites. No trends were observed at about 71
percent of the sites. Remaining results indicated primarily
decreasing trends in suspended sediment data. Most of the

decreasing trends occurred on mainstem sites for the Missis-
sippi, Arkansas, Red, and Atchafalaya Rivers, which are all
regulated with reservoirs, locks and dams, and other erosion

or flood-control structures that trap and prevent sediment from
being transported downstream. Large decreases in suspended

EXPLANATION
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sediment in the Mississippi River Basin began in the 1950s
when large reservoirs were constructed in the Missouri and
Arkansas Rivers, which were considered the largest sources of
sediment at the time. Because the Mississippi River and its
major tributaries have continued to be modified and improved
since 1990, it is suggested that declines in suspended sediment
observed along the mainstem sites during the study period are
related to ongoing watershed and channel modifications.

INTRODUCTION

The U.S. Geological Survey (USGS) National Water-
Quality Assessment (NAWQA) Program is conducting
regional assessments of water-quality conditions and trends
in 16 principal aquifers and eight major river basins (fig. 1)
(Hamilton and others, 2005). These assessments build on the
NAWQA studies conducted from 1991 to 2001 in 51 river
basins (fig. 1). Regional assessments in the eight major river
basins focus on chemicals in water, such as trends in nutrients,

0 200 400 Kilometers
'_‘_'_‘_l
0 200 400 Miles

Base from U.S. Geological Survey
digital data, 1970, 1:2,000,000 Albers
Equal-Area Conic projection Standard
parallels 29°30'N and 45°30’N, central
meridian 96°00'W

Figure 1. Locations of major river basin (MRB) and National Water-Quality Assessment (NAWQA) study areas.



sediment, and pesticides, and other relevant water-quality
issues, such as trends in biological-response data (chloro-
phyll, algae). Each basin comprises more than one NAWQA
study unit, and data used for trend testing includes data from
NAWOQA studies supplemented with data from other USGS
studies, as well as available data collected by other agencies.
One of these regional assessments explores trends in
nutrient and suspended-sediment concentrations and loads for
rivers in the south-central United States, which is defined as
the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf
Basin (hereafter referred to as the Lower-Mississippi-Texas
Basin, or LMT Basin, fig. 2). The LMT Basin includes all of
Arkansas and Oklahoma; nearly all of Louisiana and Texas;
and parts of Colorado, Kansas, Kentucky, Mississippi, Mis-
souri, New Mexico, and Tennessee. Major cities include Little
Rock, Ark.; Tulsa and Oklahoma City, Okla.; Baton Rouge
and New Orleans, La.; Dallas, Fort Worth, Houston, and
San Antonio, Tex.; Colorado Springs, Colo.; Wichita, Kan.;
Springfield, Mo.; and Memphis, Tenn. Major rivers include

INTRODUCTION 3

the lower Mississippi, Yazoo, Canadian, Cimarron, Arkansas,
White, Red, Trinity, Brazos, Colorado, and Guadalupe.

The geological features of the LMT Basin vary con-
siderably from rugged mountains to rolling hills, flat plains,
and backwater swamps. The LMT Basin encompasses six
physiographic provinces (from east to west): the Coastal
Plain, which includes the East Gulf Coastal Plain, Missis-
sippi Alluvial Plain, and West Gulf Coastal Plain sections;
the Ozark Plateaus, which includes the Springfield-Salem
Plateaus and the Boston “Mountains’’; the Ouachita, which
includes the Arkansas Valley and the Ouachita Mountains;
the Osage Plains section of the Central Lowlands; the Great
Plains, which includes the Colorado Piedmont, Raton, Pecos
Valley, High Plains, Plains Border, Edwards Plateau, and
Central Texas sections; and a small part of the Southern Rocky
Mountains (U.S. Geological Survey, 2003, fig. 3). Dominat-
ing the discharge of water and nutrients into the northern Gulf
of Mexico is the Mississippi Alluvial Plain section within the
Coastal Plain province. The Mississippi River drains 41 per-
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Figure 2. States, cities, and major rivers in the study area, south-central United States.
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cent of the conterminous United States, and its two outlets (the
lower Mississippi River and the Atchafalaya River) deliver a
combined average of 580 km3/yr of freshwater to the Gulf of
Mexico (Meade, 1995). Created by flow and flooding of the
Mississippi River during the past 2 million years or more, the
Mississippi River Alluvial Plain has an average slope of about
9.5 cm/km towards the Gulf of Mexico (Kleiss and others,
2000). One of the distinct features of the Mississippi Alluvial
Plain is the formation of natural levees along the banks of the
rivers, and the associated back-swamp deposits.

Extending to the west and south in the LMT Basin is the
West Gulf Coastal Plain section of the Coastal Plain province
(fig. 3). This area varies from rolling hills and prairie grass to
piney woods and coastal prairie as one approaches the Gulf

of Mexico in southwestern Louisiana and southeastern Texas,
an area that is extensively cultivated for growing rice (Land
and others, 1998). In southwestern Louisiana, the West Gulf
Coastal Plain section is divided into a series of broad, flat
areas separated by bottomland hardwood riparian corridors,
which vary in width from only a few hundred meters to several
kilometers (Demcheck and others, 2004).

To the northwest of the Coastal Plain province are the
Ozark Plateaus and Ouachita Provinces. These areas are fairly
rugged, mountainous areas that are predominantly pasture,
grassland, and forest. Although mining plays a large role in
local industry in these two provinces, they are also known
for their beautiful and scenic landscapes that support tourism
(Adamski and others, 1994).

Colorado
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Plains
Border
Raton
Section Springfield-Salem Plateaus,
East
Boston Gulf
Pecos “Mountains” 3 Coastal
Valley Osage Arkansas Valley LN Plain
High Al N
Plains SOEE Ouachita \”0)$Q\’3
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Central Coastal Plain
Texas
Section
Edwards o~
Plateau ﬁ
‘I
Base from U.S. Geological Survey
EXPLANATION digital data, 1970, 1:2,000,000 Albers
[ ] Coastal Plains Equal-Area Conic projection Standard
. parallels 29°30’N and 45°30’'N, central
[ ] Ouachita meridian 96°00'W
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[ Great Plains | 0 200 400 Miles
[ 1 Southern Rocky Mountains
Source: Modified from U.S. Geological Survey (2003).

Figure 3. Physiographic provinces within the study area.



To the west, the headwaters of the Trinity and other
smaller rivers drain the southern end of the Osage Plains sec-
tion of the Central Lowlands physiographic province into the
Gulf of Mexico. The Osage Plains section is characterized by
prairie grasses, shrubs, and some forest in southern Kansas,
Oklahoma, and northern Texas. Much of the area supports
corn and soybean production or has been converted to pasture
and hay to support cattle production (Fitzgerald and others,
2000).

Farther to the west, the remaining land area of the LMT
Basin is in the Great Plains province, except for a small part
in the Southern Rocky Mountains province (fig. 3). The Great
Plains province is quite diverse. From the rugged sections of
the Colorado Piedmont, which lies on the eastern side of the
Rocky Mountains, to the volcanic formations of the Raton
section, the Great Plains extends southward and eastward to
include the flat, prairie areas of the Plains Border and High
Plains sections (Trimble, 1980). Farther south, the Pecos Val-
ley section of the Great Plains is dominated by karst topogra-
phy, and the rugged (but picturesque) Edwards Plateau section,
which is a fairly sparse area, is suited for oil and gas produc-
tion as well as cattle farming (Trimble, 1980; Bush and others,
2000).

Precipitation varies considerably across the LMT Basin,
generally following a decreasing pattern from the southeast
to northwest, from more than 152 cm per year in southeastern
Louisiana to less than 41 cm per year in Colorado. The west-
ern part is fairly arid (annual rainfall less than about 64 cm
total per year [Owenby and others, 2001]) and is fairly rural
with few large cities. Land use in the western part is primar-
ily grass and fallow land with some row and small grain crops
(fig. 4). Water-resource issues in the western part are related
to water use, water rights, and irrigation as much as they are
related to water quality. The eastern part has a humid, sub-
tropical climate with annual rainfall amounts ranging from 100
to greater than 130 cm per year (Owenby and others, 2001);
subsequently, water resources are fairly abundant. Land use in
the eastern part is primarily forest and pasture land; how-
ever, row crops are abundant in the fertile Mississippi River
Alluvial Valley. The eastern part is fairly rural with respect
to land area but is the more populous area and contains many
of the previously mentioned cities (fig. 2). With the extreme
variations in geology, geography, hydrology, and land use, it
is expected that trends in concentrations and loads of nutrients
and sediment in surface waters within the LMT Basin will also
vary considerably.

Several reports describe trends in nutrient and sediment
data for the LMT Basin. For example, studies by Van Metre
and Reutter (1995), Demcheck and others (2004), Davis and
Bell (1998), and Coupe (2002) document trends in concentra-
tions and loads of nutrients or sediments for statewide assess-
ments or for selected rivers. National studies, such as work
by Mueller and others (1995), include assessments of nutrient
data from both ground-water wells and surface-water data-col-
lection sites. Studies summarized by Goolsby and Battaglin
(2000), Meade (1995), and Turner and Rabalais (2004) assess
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nutrient concentrations and loads delivered by the Mississippi
River to the Gulf of Mexico; although these studies include
data and results from the LMT Basin, most focus on the Upper
Mississippi River Basin upstream from the LMT Basin. The
U.S. Environmental Protection Agency (USEPA) recently
released results from its Nutrient Pilot Study, which included
an assessment of nutrient concentration and loads from
coastal or near-coastal waters draining into the northern Gulf
of Mexico from Louisiana, Mississippi, and Alabama (U.S.
Environmental Protection Agency, 2004a). This assessment
is unique and timely in that it primarily focuses on the entire
LMT Basin, not just parts of the basin.

Purpose and Scope

This report presents trends observed in nutrient and sedi-
ment concentrations and loads during the period 1993-2004
for selected rivers and streams in the LMT Basin that drain
into the northwestern Gulf of Mexico. Trends are computed
for streamflow, ammonia, nitrite plus nitrate, total nitrogen,
orthophosphorus, total phosphorus, and suspended sediment.
Trends observed in the LMT Basin are compared spatially
to determine potential regional patterns and are compared
with trends in hydrologic and human-induced factors such
as nutrients sources, streamflow, and implementation of best
management practices to determine potential cause and effect
relations.

This report also presents loads and yield estimates for the
study period as a basis for comparing the delivery of nutrients
and sediment to the northwestern Gulf of Mexico from the
various drainage basins within the LMT Basin. In addition,
load estimates at a few selected sites for the period 1980-2004
are presented to give hydrologic perspective to trends in loads
observed during 1993-2004.
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This section documents sources of data used in this
analysis, protocols used for site selection and data screening,
methods used for trend and load calculation, and methods used
for analysis of nutrient-source data and landscape attributes.
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Figure 4. Land use within the study area.

Sources of Data

Two types of data were assembled for analysis in this
study: water-chemistry and flow data used for trend and
load analyses, and spatial data such as nutrient sources and
landscape attributes used to explain identified trends. Data
are stored and archived locally in the databases of the USGS
Mississippi Water Science Center and nationally as part of the
NAWQA Program.

The primary source of water-chemistry and flow data for
this assessment was data collected by the USGS. Since the
early 1970s, the USGS has collected water-quality informa-
tion from major river basins throughout the United States as
part of three national programs: the Hydrologic Benchmark

Network (HBN), the National Stream Quality Accounting
Network (NASQAN), and the NAWQA Program. In addition,
other long-term water-quality monitoring stations operate as
part of USGS cooperative projects in various States. All data
from these USGS efforts have been compiled and are available
to the public by means of the Internet as part of the National
Water Information System Web Interface (NWISWeb) acces-
sible at http://waterdata.usgs.gov/nwis/qw.

Another source of water-chemistry data was data col-
lected by State agencies within the LMT Basin as part of
ambient data-collection programs. Environmental agencies in
Arkansas and Missouri have partnered in the past with USGS
to acquire certification for their respective laboratories through
the USGS Laboratory Evaluation Project, which is under the
direction of the USGS Branch of Quality Systems (http://bgs.



usgs.gov/lep/index.html); therefore, all of the data approved
for these two State agency laboratories have been entered into
the national USGS database and are available to the public
through the NWISWeb previously mentioned. In addition,
nutrient and sediment data were requested and received from
the States of Louisiana, Mississippi, Tennessee, and Texas.
The final source of water-quality data considered for analysis
was from the USEPA Legacy Data Center (LDC) and the Stor-
age and Retrieval (STORET) database (U.S. Environmental
Protection Agency, 2004b).

In order to explain trends in surface water-quality data,
it is important to identify and understand temporal and spatial
patterns in source data and landscape attributes. Geographic
information system (GIS) software (ESRI, 2005) was used to
automatically delineate drainage-area boundaries and create
digital polygons for most sites included in the trend analyses.
Sites excluded from drainage area delineation were sites that
were extremely large, such as sites on the mainstem of the
Mississippi River, or sites where drainage area delineations
were indeterminate, such as marsh areas along the coast where
flows intermingle. Once the drainage areas were delineated,
their corresponding digital polygons were overlain on the-
matic maps of county-level nutrient source and landscape data
pertinent to this study. Source data were then summed for a
particular site’s drainage area on a temporal basis. The nutrient
source and landscape data included in this analysis were fertil-
izer use for nitrogen and phosphorus (annual data for the entire
study period), manure generation for nitrogen and phosphorus
(available for 1992, 1997, and 2002), atmospheric deposition
for nitrogen (annual data for the entire study period), popula-
tion density (1990 and 2000 census data), and management
practices information (including irrigation type and conser-
vation practices for 1992 and 1997). Where drainage areas
extended only partly into one or more counties, the source or
landscape data were apportioned according to the amount of
agricultural or urban land contained within the drainage area,
as described by Nakagaki and Wolock (2005).

Site Selection and Water-Quality Data
Screening

Sites were selected for analysis of trends from the USGS
NWISWeb, USEPA-LDC and STORET, and State ambi-
ent databases for water years 1993-2004 (October 1, 1992,
through September 30, 2004). A few sites were included in
this study that had sampling periods that started after October
1, 1992, or ended prior to September 20, 2004, because of
their importance relative to location or land-use type. Other
than a few exceptions, most sites were selected for trend
analysis based on the following minimum criteria:

 Period of record with a beginning year of 1993 or ear-
lier and an ending year of 2004 or later;

e At least quarterly sampling each year;
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e Data gaps no longer than 2 years and only during the
middle part of the study period;

* Representative coverage of samples over the complete
range in flow for the study period to avoid bias toward
low or high values;

* Representative coverage over all seasons to avoid bias
towards certain times of the year; and

* Continuous mean daily streamflow data at the trend
site or an alternate site nearby that could be used as
a substitute (for example, a streamflow site located
downstream from the trend site would be appropriate
if no major tributaries enter the stream between the
streamflow site and the trend site).

Based on these criteria, there were 115 sites selected
for trend analysis that had an adequate amount of data of at
least one of the nutrient constituents or suspended sediment
(table 1 and fig. 5). Because site-selection criteria were based
primarily on data availability, spatial representation of the
selected sites within the LMT Basin was considered fair to
poor because there were areas that were underrepresented,
such as in southern Kansas, most of Oklahoma, and parts of
Texas and Louisiana (fig. 5). Lack of spatial representation, as
well as other issues such as a wide range of drainage area sizes
and multiple sites located on the same stream (nesting), could
cause problems when interpreting trend results in a regional
context.

Although there were areas within the LMT Basin that
were underrepresented spatially, nearly all of the major rivers
and streams that drain directly into the Gulf of Mexico had
trend sites that were included in the study. The exceptions
were the Guadalupe River in Texas (however, sites on the San
Antonio River, which is a major tributary of the Guadalupe
River, were included) and the Calcasieu River in Louisiana;
neither of these two rivers had sites with enough water-quality
or flow data required for analysis. The Ohio River at Dam 53
near Grand Chain, Illinois (site 1, table 1), and the Mississippi
River at Thebes, Illinois (site 2, table 1), were outside of the
study area but were included for analysis in order to document
nutrient and sediment loadings entering the study area.

As a basis for comparing trend, load, and yield results,
the trend sites were then grouped into four primary systems
of rivers as follows: the Mississippi, Atchafalaya, Louisiana-
Gulf/Pontchartrain, and Texas-Gulf systems (highlighted in
yellow, green, orange, and blue, respectively, in tables and fig-
ures throughout this report). In most recent studies, the Missis-
sippi and Atchafalaya systems typically are grouped together
because nearly all of the water in the Atchafalaya River comes
from diversion of about 25 percent of the flow from the Mis-
sissippi River (about 4,350 m3/s average annual flow; Goolsby
and others, 1999). The remaining flow in the Atchafalaya
River comes from the Red and Ouachita Rivers, which have
combined average annual flow of about 1,020 m3/s. Because
the Atchafalaya River is a separate entry point from the Mis-
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Figure 5. Sites selected for trend analyses and load calculations in the study area for the period, 1993-2004.




sissippi River into the Gulf of Mexico, results were grouped
separately for the Atchafalaya River in this study.

Sites with small drainage areas were not eliminated,
although their overall contributions of nutrient and sediment
loads were potentially insignificant within the drainage area of
a large river basin. These sites were important as they provided
valuable information related to specific land-use types. For
example, sites that were part of localized urban studies, such
as near Colorado Springs, Colo. (sites 21-27, table 1), and near
Austin, Tex. (sites 101-106, table 1), were included to under-
stand trends in nutrient and sediment data from urban runoff
as opposed to other areas in the LMT Basin that were forested
or agricultural. Also, inclusion of sites with smaller drainage
areas provided the opportunity to document potentially dra-
matic changes in water quality over the past decade that were
due to management changes or restoration activities.

Data were compiled separately for ammonia, nitrite plus
nitrate, total nitrogen, orthophosphorus, total phosphorus, and
suspended sediment. For data compiled from NWISWeb, pre-
vious comparisons of paired filtered (dissolved) and unfiltered
(total) samples for ammonia, nitrite plus nitrate, and ortho-
phosphorus at the USGS National Water Quality Laboratory
(NWQL) in Denver, Colo., indicated that analytical results
were virtually indistinguishable nationally (U.S. Geologi-
cal Survey, 1992). Comparisons were made for this study
and study period for data compiled from NWISWeb. Similar
results were observed when filtered nitrite plus nitrate data
were compared to unfiltered data; however, differences were
observed when comparing filtered and unfiltered ammonia and
orthophosphorus. Therefore, filtered and unfiltered results for
nitrite plus nitrate were combined, but only filtered ammonia
and orthophosphorus were used for analysis in this study for
data compiled from NWISWeb.

When a direct measurement of total nitrogen was unavail-
able, it was calculated as the sum of unfiltered ammonia plus
organic nitrogen (hereafter referred to as Kjeldahl nitrogen)
and nitrite plus nitrate data. If either Kjeldahl nitrogen or
nitrite plus nitrate data were missing, then total nitrogen was
not calculated. If either Kjeldahl nitrogen or nitrite plus nitrate
data were less than their respective reporting levels (hereafter
referred to as censored values or results), then the value for
total nitrogen was calculated as follows:

e If both Kjeldahl nitrogen and nitrite plus nitrate data
were censored, then total nitrogen was censored to the
sum of both censoring levels;

» If Kjeldahl nitrogen was not censored, but nitrite plus
nitrate was censored, then total nitrogen was calculated
as the sum of the Kjeldahl nitrogen value plus half of
the censored value for nitrite plus nitrate; and

e If Kjeldahl nitrogen was censored, but nitrite plus
nitrate was not censored, then total nitrogen was cal-
culated as the sum of the nitrite plus nitrate value plus
half of the censored value for Kjeldahl nitrogen.

APPROACH 9

Once the data sets for the sites considered in this study
were compiled, additional censoring adjustments were neces-
sary prior to analysis. Before the late 1990s, the NWQL
censored data at the minimum reporting level (MRL), which
is the smallest measurement of concentration that can be
measured by using a particular analytical method (Oblinger-
Childress and others, 1999). Establishment of MRLs has
been inconsistent across methods, inadequately defined, and
generally undocumented. In 1992, the NWQL began adopt-
ing the USEPA method detection limit (MDL) procedure for
establishing censoring levels for two pesticide methods. The
MDL method is described as the minimum concentration of a
substance that can be measured when the risk of a false posi-
tive detection is no more than 1 percent (Oblinger-Childress,
1999). Because the risk of a false negative at the MDL can
be as much as 50 percent, the NWQL formed a team to better
define censoring levels at higher levels. As a result, the NWQL
began to censor data at the laboratory reporting level (LRL),

a value generally twice the MDL (actually the LRL is twice
the long-term MDL [LT-MDL], which is a modification of the
USEPA MDL designed to capture more method variability).
This practice was implemented in 1999 for Kjeldahl nitrogen,
in 2000 for total phosphorus, and in 2001 for ammonia, nitrite
plus nitrate, and orthophosphorus. Values measured less than
the LT-MDL were reported as less than the LRL, and values
measured between the LT-MDL and LRL were reported as
estimated.

Using the LRL can result in upward bias during statisti-
cal analyses of censored data (which are used in this study)
because the probability that an observation might fall between
the LT-MDL and LRL is likely overstated (Helsel, 2005). The
possibility of the occurrence of a few false negatives is less
of a concern than the problems caused by such a bias (Muel-
ler and Spahr, 2005). As a result, all data analyzed by the
NWQL and used in this study were recensored from the LRL
to the associated LT-MDL reported by the NWQL for a given
constituent during a given time period. A small number of the
samples had been diluted, and resulting LRL values had been
multiplied by the dilution factor; for these samples, values
were recensored to the MDL multiplied by the dilution factor.
Recensoring of the NWQL data took place prior to calculation
of total nitrogen previously discussed.

Trend and Load Calculations

A trend is defined as a systematic change in a water-
quality constituent over time (D.L. Lorenz, U.S. Geological
Survey, written commun., 2004). To complete trend tests
for water-quality data, one must understand the complexi-
ties and processes that influence water-quality conditions in
surface waters. Natural influences include climate, hydrology,
precipitation, soil erosion, chemical reactions, and biological
activities. Human influences include chemical applications,
flow regulation, addition or removal of wastewater treatments
plants, and land-use changes. The difficulty in interpreting
trends in water-quality data is the ability to separate actual
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trends in the data from natural variability, as well as from
artificial trends (for example, trends resulting from changes in
sample collection, sample processing, and laboratory analyti-
cal methods over time).

It is important to decide if flow adjustment is necessary
in trend testing. If trends tests are used to determine effects on
aquatic communities, then flow adjustment may not be impor-
tant. For example, total ammonia (NH3 plus NH4+) exceeds
chronic criterion for aquatic organisms for concentrations
above about 2.1 milligrams per liter (mg/L) when pH is within
the range of 6.5 to 9.0 and temperature from O to 30 degrees
Celsius (Mueller and others, 1995). To determine the effects
on a particular ecosystem, it is not pertinent that increases in
streamflow were the primary cause for the increases in total
ammonia over time, but simply that ammonia concentrations
increased and exceeded the criterion. If, however, it is impor-
tant to understand why ammonia concentrations exceeded the
criterion over time, then the trend test should be adjusted for
flow to determine if the trend is retained. Flow adjustment
is a technique used to understand actual changes in a water-
quality constituent without influence of trends in flow. Data
are adjusted for flow by establishing a relation between flow
and the water-quality constituent prior to trend testing. If the
trend in ammonia was retained when flow adjusted, then the
increase may have been caused by a human-related action,
such as an increase in fertilizer usage.

For this study, it was important to estimate both unad-
justed (hereafter referred to as total trends in concentration)
and flow-adjusted trends to understand the overall picture of
what was happening in relation to nutrient and sediment con-
centrations within the LMT Basin. Other important trends to
consider were trends in load, which provide a direct measure
of the effect of nutrients and sediment discharging on the
northwestern Gulf of Mexico, and trends in flow, which will
improve interpretation of water-quality trends by understand-
ing how flow has changed over time. The following sections
describe methods used to calculate (1) total trends in concen-
tration and load; (2) trends in flow-adjusted concentration; (3)
interpretation of trend results; and (4) annual load calculations.

Total trends in concentration and load

Determination of total trends in concentration and load
was attempted for all six constituents at each site listed in table
1 for the study period. Total trend in concentration and trend
in load are defined as the percent changes in model-estimated,
smoothed trend in concentration and load over the period of
the water-quality record, divided by the length of the record
(trend is, therefore, represented as percent change per year).
The model-estimated trend in concentration and load is deter-
mined by combining separate trend models for streamflow and
water-quality concentration. The streamflow model, estimated
from all daily streamflow measurements available over the
study period, relates the daily streamflow to an intercept, a
linear trend term (measured by time expressed as a decimal),
and sine and cosine seasonal factors (also functions of decimal

time). The water-quality model is represented by the following
equation:

¢, =b,+m(q)b,+ T )b, +xpb +e, (1)
where:

the logarithm of constituent concentration in
period t;

b, = an intercept value;

q, = the logarithm of streamflow;

T, = decimal time;

X, = vectors of ancillary predictors such as sine
and cosine functions of decimal time to
account for seasonality;

b,b;,b, = coefficients determined from model fitting;

m(q)b, = multi-element vector function consisting of
the logarithm of streamflow and the square
of the natural logarithm of streamflow;

h(T)b, = multi-element vector function consisting of

the second order polynomial of decimal
time; and
random error term.

The smoothed trend in water-quality concentration is
determined by the streamflow and time trend components of
the water-quality model, where the smoothed trend in stream-
flow is substituted for the actual streamflow in the streamflow
component (the smoothing of streamflow is a linear fit over
logarithmic space). The smoothed trend in streamflow is given
by the following equation (which is a form of the linear rela-
tion y = b + mx):

g=q+aT,-T), 2
where:
7 = smoothed trend in the logarithm of flow in

the period t;

q = average of the logarithm of flow over the
trend period;

T, = decimal time;

T = average, or midpoint, of the decimal time

over the trend period; and
coefficient determined from the model
fitting.

Total trend in concentration is obtained by transforming
the water-quality trend from logarithm space to real space,
computing the percent change corresponding to the first and
last dates of the water-quality record period, and dividing by
the decimal time length of the study period. Trend in load
is computed similarly, except the smoothed trend in stream-
flow is added to the smoothed trend in water-quality prior
to retransformation to real space. The appendix contains a
detailed description of this method, with additional discussion



of the estimation of the streamflow and water-quality models
and an explanation of the associated statistical tests for trend.

Flow-adjusted trends in concentration and
trends in flow

The estimation of flow-adjusted trend in concentration
is similar to the estimation method for total trend. The only
difference is that the streamflow component of the water-qual-
ity model is not included in the determination of the smoothed
water-quality trend. The estimation of the trend in stream-
flow is based on the smoothed streamflow trend correspond-
ing to the simple linear function of decimal time previously
described. The conversion of this smoothed trend to a trend
estimate follows the same procedure described for total trend,
the only difference being that the period of the trend is defined
by the beginning and ending dates for the flow record within
the analysis period rather than the beginning and ending dates
of the water-quality record.

Interpretation of trend results

Each trend analysis produced an associated estimate of
probability, or p-value, which is the probability of attaining a
specified significance level (Helsel and Hirsch, 1992). P-val-
ues were compared to a significance level, or, of 0.05 (5 per-
cent), which meant that there was less than a 5-percent chance
of errors in test results. Trend results presented in this report
were considered statistically significant when p-values were
less than 0.05. In addition, diagnostic plots (such as a plot of
actual versus predicted values) and standard error of prediction
(SEP) estimates were examined to determine overall model
“fit.” Models and subsequent trend results were rejected if
problems were observed in diagnostic plots (such as predicted
values were much higher or lower than actual values) or if a
model produced large, unacceptable SEP estimates.

Trend results were reported as a percent per year change;
however, it was important to understand these percent changes
in terms of original units, such as milligrams per liter for
concentration data. Reference concentrations and loads were
computed for each statistically significant trend. Reference
concentrations and loads are best explained as the “start-
ing point” of a trend line drawn through the data with a
slope equal to the trend estimate. A reference concentration
is obtained by evaluating the water-quality model at refer-
ence conditions consistent with the trend in water quality at
the beginning of the water-quality period of record. These
conditions include setting streamflow equal to its smoothed
trend value corresponding to the first day of the water-quality
period, setting the trend term to the decimal equivalent of the
first day of the water-quality period, and setting the sine and
cosine seasonal factors to their average values over the full
water-quality period. The value of the reference concentration
is transformed to real space, and a multiplicative retransforma-
tion factor is applied to correct for statistical bias arising from
sample error in the water-quality model coefficients (see the
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appendix for additional details). The reference load is com-
puted similarly, except that streamflow trend as determined

by the streamflow equation evaluated at the starting date of
the water-quality period, is added to the reference concentra-
tion prior to transformation to real space; also, a multiplicative
constant is applied to convert the result to appropriate load
units.

When there is no trend in streamflow over time, total
trend and flow-adjusted trends are basically equivalent.
Because the water-quality model used to derive these trends
includes streamflow as a predictor, the estimates of trend are
immune to bias arising from preferential water-quality sam-
pling during high-streamflow events. Care should be taken,
however, in interpolating or extrapolating these trend esti-
mates within or beyond a site’s period of record, or in making
comparisons of trend across sites that have different periods of
record. Because of the possible nonlinearity of trend, as aris-
ing from nonlinear specifications of the water-quality model
streamflow or trend components, trends within the water-qual-
ity period or trends experienced outside this period could be
quite different from the trends reported here. It also should be
recognized that the method used to evaluate trend is insensitive
to changes in the variability of streamflow or to changes in the
unexplained variability of water quality, both changes poten-
tially resulting in trends in water quality arising from nonlin-
earity in the specification of the water-quality model. Accom-
modation of this type of uncertainty awaits future research.

Load calculations

Annual load and yield calculations were attempted for
all six constituents at each site listed in table 1 for each water
year in the study period. The statistical program LOAD-

EST (Runkel and others, 2004) was used to calculate annual
loads. The specific software used was S-LOADEST, which is
a “USGS plug-in” version of LOADEST in S-PLUS (ver-
sion 7.0), a PC-based statistical software package (Insightful,
2005). LOADEST uses a seven-parameter linear regression
model that incorporates flow, time, and seasonal terms to esti-
mate loads of concentration over time for specific time periods
(annual, monthly, or daily loads). The calibration and estima-
tion procedures within LOADEST are based on three statisti-
cal estimation methods. The first two methods, maximum
likelihood estimation (MLE) and adjusted maximum likeli-
hood estimation (AMLE) are appropriate when the calibration
model residuals are normally distributed. Of the two, AMLE
is more appropriate when the calibration data set (time series
of streamflow and concentration data) contains censored data;
otherwise, MLE and AMLE give the same results when there
are no censored data present. The third method, Least Abso-
lute Deviation, is an alternative to AMLE when residuals are
not normally distributed (Runkel and others, 2004).

One load model was developed for the entire study period
for each constituent at each study site (in other words, the
study period was not subdivided into smaller periods of time).
Daily mean values of streamflow were used in the calibra-
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tion data set for each site for each sample date. A LOADEST
option was chosen that automatically selected a “best-fit”” load
model by using the Akaike Information Criterion (Akaike,
1981) associated with each of the eight subsets of the seven-
parameter regression equation. The AMLE method was used
to estimate the coefficients of the dependent variables in the
best-fit regression model equation in LOADEST because
censored data were present in nearly all data sets. The AMLE
procedure also corrects for first-order bias in the regression
coefficients and minimizes other biases that can occur when
estimated logarithms of load are retransformed to original
units (Cohn, 1988; Cohn and others, 1992).

Two fundamental assumptions of linear models are
homoscedasticity, which means that the variance about a
regression line is similar for all predictor variables, and nor-
mality, which is an assumption that model residuals follow a
normal (or even) distribution. Residuals were plotted in a vari-
ety of ways such as quantile plots, residuals versus streamflow,
residuals versus decimal time, and so forth. The plots were
examined for homoscedasticity and normality; for example,
residuals are considered to be normally distributed if they plot
evenly above and below a “zero” horizontal line in a residuals
versus decimal time plot. If either assumption was violated,
the model was rejected. If the best-fit model did not meet the
linearity assumptions, the next step was to explore a custom
model with user-specified variables. Independent variables
available for consideration in custom models were reciprocal
transform of streamflow, reciprocal transform of streamflow
squared, one or two breakpoints in streamflow, and seasonal
periods that were a series of months defined by the user.
Residuals from the resultant custom models were similarly
examined for homoscedasticity and normality, and the optimal
model was selected. If this step failed to produce an acceptable
model, then the constituent at that site was excluded from load
calculations.

Once calibrated, daily mean values of streamflow were
used as independent variables in a prediction data set to esti-
mate annual loads. Average annual loads were calculated by
dividing the total load for the study period by the number of
years of estimated loads for that site. Average annual yields at
each site were then calculated by dividing the average annual
load by the site’s drainage area.

An attempt was made to provide hydrologic perspective
to selected trends in loads from this study. In other words,
were trends in loads observed in this study part of much longer
trends or were they more indicative of the most recent decade?
Sites 1, 2, 48, and 53 in the Mississippi system, and sites
64 and 68 in the Atchafalaya system are part of the USGS
NASQAN Program and were selected to provide hydrologic
perspective because they have long-term concentration and
flow data. Annual nitrogen and phosphorus loads have been
computed for these sites for their periods of record (early
1960s to present) by using LOADEST software and a 5-year
“moving window” approach (Aulenbach and others, 2007).
These annual loads were plotted for the time period 1980-
2004 along with a corresponding locally weighted scatterplot

smooth (LOWESS; Helsel and Hirsch, 1992) line drawn to
indicate variability in the data over the longer time period.
Although suspended sediment load calculations were not
available in Aulenbach and others (2007), suspended sediment
loads at these six sites were computed by using the 5-year
moving window approach for the 1980-2004 time period and
were graphed similarly. (Note: Annual loads of ammonia,
orthophosphorus, and suspended sediment were not computed
for site 64 for the period 1980-2004 by either Aulenbach and
others (2007) or the authors of this study because of lack of
concentration or flow data.)

Site 112 in the Texas-Gulf system was also selected
to provide hydrologic perspective because it has long-term
concentration and flow data, and it represents a river system
other than the Mississippi and Atchafalaya. Annual loads were
computed by using the 5-year moving window approach for
the period 1980-2004 for nitrite plus nitrate, total nitrogen,
and total phosphorus data from site 112 and then were graphed
similarly to those previously mentioned with a corresponding
LOWESS line. Other nutrient constituent and suspended-sedi-
ment loads were not calculated for the 1980-2004 period at
site 112 because of lack of concentration or flow data prior
to 1993. (Note: average annual streamflows for the period
1980-2004 for the same seven sites mentioned here were also
graphed with a LOWESS line to give hydrologic perspective
to trends in streamflow calculated for the study period.)

Analysis of Source Data and Landscape
Attributes

Trends in nonpoint and point sources of nutrients were
related to trends in nitrogen and phosphorus data estimated for
this study. Trends in nonpoint sources of nitrogen and phos-
phorus included fertilizer, manure, and atmospheric deposi-
tion (nitrogen) data, as previously mentioned. Nitrogen and
phosphorus fertilizer data were available for both agricultural
and urban settings. These data were combined to create a
single nitrogen and phosphorus fertilizer data set. Similarly,
nitrogen and phosphorus data from manure were available
for both confined and unconfined animal feeding operations,
which were combined to create a single nitrogen and phospho-
rus manure data set. Data for nitrogen in atmospheric deposi-
tion were based on data from the USGS National Atmospheric
Deposition Program / National Trends Network, accessible at
http://bgs.usgs.gov/acidrain/. Fertilizer, manure, and atmo-
spheric nitrogen data were expressed, in terms of mass, as total
kilograms of nitrogen or phosphorus summed for the drainage
area at a particular site. More detail on fertilizer, manure, and
atmospheric deposition data generation can be found in Ruddy
and others (2006).

Information about point-source loadings of nutrients was
obtained from State management agencies, with additional
information obtained from the USEPA Permit Compliance
System (http://www.epa.gov/compliance/data/systems/water/
pessys.html).  Unfortunately, information for point-source
loadings from these two sources were inconsistent for the



study area; therefore, population data were used as a ““surro-
gate” to make inferences regarding point-source loadings as a
means of interpreting trend results. The population data were
derived from a 30-m resolution grid of census block groups
and population counts based on the 1990 and 2000 Census

of Population and Housing (U.S. Census Bureau, 1991; U.S.
Census Bureau, 2000). Population data also were used to
explain trends in suspended sediment; for example, increases
in population could imply increases in urbanization, which in
turn could cause increases in sediment in streams due to clear-
cutting of trees for new subdivisions, increase in impervious
area, and so forth. In terms of density, population data were
expressed as number of persons per square kilometer.

To relate trends in water quality to the source data, the
source data were reduced to a single value of trend at each site
where source data were available. If there were more than two
points of time with data, such as the fertilizer data which was
generated on an annual basis, a Theil slope was computed. The
Theil slope is the median of all pairwise slopes (Helsel and
Hirsch, 1992) and is expressed as the amount of increase or
decrease in the source data per year. The Theil slope computed
at each site was then normalized by dividing by the drainage
area of the site. Because the population data had data for only
two points in time and were already expressed in terms of
drainage area, the trend in population was simply calculated as
the difference in densities from 1990 to 2000.

Weighted-least-squares (WLS) regression was used to
determine if there were statistically significant regional pat-
terns by comparing water-quality trend results to correspond-
ing trends in source data. The reduced results (trends) of the
source data were the independent variables in the WLS regres-
sion. Water-quality trend values were the dependent variables
in the WLS regression, and each was weighted so that values
that were known with more confidence (those with lower vari-
ances) had a greater weight in the regression than values that
were known with less confidence (Helsel and Hirsch, 1992).
Because weights were used, all water-quality trend values
(coefficients of time) were included in the WLS regression,
even those that were not considered statistically significant.
Weights were based on the inverse of the variance from the
trend estimates for each constituent at each site. Statistically
significant regression results were those that had p-values
greater than 0.05 (or there was less than a 5-percent chance
that a result was not statistically significant).

Water-quality trend results were also compared to trends
in management practices at each site. The management prac-
tice data were derived from selected 1992 and 1997 National
Resources Inventory (NRI) data compiled by the Natural
Resources Conservation Service (NRCS; U.S. Department of
Agriculture, 1995; U.S. Department of Agriculture, 2001).
These data were categorized into two primary groups — areas
with irrigation and areas with conservation practices. These
data were aggregated in areas with agricultural land use at
the county level and then summed within the drainage area
for each site. Irrigated areas were further divided into four
subgroups: areas that used well water as the irrigation source;
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areas that used surface water (ponds, lakes, reservoirs, streams,
ditches and canals) as the irrigation source; areas that used
lagoons or other wastewaters, or a combination of sources; and
areas that used gravity, pressure, or a combination of gravity
or pressure as a means of irrigation-water delivery. Conserva-
tion practices data were further divided into three subgroups:
areas that used contour farming and land leveling; areas that
used tail-water recovery; and areas that had surface drainage.
All management practices data were expressed, in terms of
area (square kilometers), as the amount of land in the drainage
area of a study site that contained that particular practice.

Management practice categories used in this study were
the only ones where data were available in both 1992 and
1997 so that trends could be calculated. Unfortunately, several
potentially influential data sets were not included in the
1997 NRI series such as conservation tillage, irrigation land
management, irrigation land leveling, and subsurface drains.
The data that were not included, particularly the conservation
practice data, may have had a substantial influence on water-
quality trends in streams in the LMT Basin, and these possible
influences are not reflected in the analysis of management
practices in this report.

For these reasons, WLS regression analysis techniques
presented previously were not used with respect to the
management practices data. Instead, potential trends in the
management practices data were determined by subtracting
the amount of land in a particular practice in 1992 from the
amount of land in that same practice in 1997. The results were
then normalized by dividing the difference by the drainage
area of the study site and then multiplying by 100. The result-
ing value represented the change in the amount of a particular
management practice expressed as a percentage of the total
drainage area of a study site. In most cases, the change in
amount of management practices from 1992 to 1997 repre-
sented a very small percentage of the total drainage area of a
particular site (most less than 1 percent); only values greater
than 1 percent (representing an increase in the amount of man-
agement practices) or values less than -1 percent (represent-
ing a decrease in the amount of management practices) were
reported in this study.

RESULTS

Results of this study are presented in the following four
sections: streamflow, nitrogen, phosphorus, and suspended
sediment. Although specific trend results are presented in
tables, they are also plotted to provide the reader visual detail.
Annual loads are tabled where applicable. To maintain mini-
mal text interruptions, all tables are presented at the end of the
report.

Explanations of detected trends on a regional scale were
problematic due to limited nutrient source, land use, and man-
agement-practice explanatory data. However, explanations of
notable trends at some locations are discussed in each section
where supported by literature. These trend explanations are
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general and are not intended to be definitive. A more detailed
scientific investigation at each site would be necessary to
provide a complete explanation as to the cause of a particular
trend.

Streamflow

Trend analyses of streamflow data were attempted for
all study sites in the four primary river systems (table 2, fig.
6). Trend results were rejected for five sites because of poor
model fit. Of the remaining 110 sites where trend analyses
were attempted and results were considered acceptable, there
were 70 sites (about 64 percent) where no significant trends
in streamflow were observed during the study period (table
2). Decreasing trends in streamflow were observed at 38 sites
ranging from -8.2 to -2.2 percent per year during the study
period (table 2, fig. 6).

For the study area, moist conditions prevailed at the
beginning of the study period through about 1996 as observed
from monthly Palmer Hydrologic Drought Index maps
(National Oceanic Atmospheric Administration, 2006). Severe
to extreme drought conditions occurred three different times
during the study period—1996, 1998, and 2000—with the most
extreme drought conditions occurring from October 1999
through November 2000 (National Oceanic Atmospheric
Administration, 2006). Although there are many factors that
could influence trends in streamflow, such as changes in land
use, urbanization, and gain/loss of riparian zone wetlands, it
is believed that the overall decreasing trends in streamflow for
the study area during the study period likely were due to moist
conditions occurring at the beginning of the study period and
the influence of three drought periods near the middle and end
of the study period (with the most extreme occurring in 2000).

In looking at streamflow data at selected sites for the
period 1980-2004 (fig. 7), the decreasing trends in streamflow
at sites 2, 48, 64, and 68 were specific to the study period and
were not part of long-term trends. There was a slight decreas-
ing trend (-2.2 percent per year) at site 53, which is barely
noticeable in the streamflow data for the time period 1980-
2004 at site 53 in figure 7. There were no trends in streamflow
in either the current study period or the period 1980-2004 at
site 1 (table 2, fig. 7).

Only two sites had significantly increasing trends in
streamflow. Increasing trends in streamflow of 7.9 and 10 per-
cent per year at sites 112 and 113 (fig. 6), respectively, on the
San Antonio River in the Texas-Gulf system were observed
during the study period. After the drought of 2000 subsided,
moist conditions returned to south-central Texas, and condi-
tions have been considered extremely moist since late 2002
with Palmer Hydrologic Drought indices consistently at or
above about 4.00 (National Oceanic Atmospheric Administra-
tion, 2006). Moist conditions returning to southern Texas after
the drought of 2000, coupled with recent increases in urban-
ization and impervious surfaces within the San Antonio River
Basin (as suggested by Sahoo and Haan, 2005), are likely
contributors to the increasing trends in streamflow during

the study period at these two sites. In addition, the increasing
trends in streamflow for the San Antonio River Basin for the
study period were not part of long-term increases but appear to
be part of a recent decadal trend that started about 1995 (based
on average annual flows assembled for site 112 in figure 7).

Nitrogen

Specific details about trend, load, and yield results for
ammonia, nitrite plus nitrate, and total nitrogen data are dis-
cussed at the beginning of this section. These results are then
related to potential trends in nutrient sources and landscape
attributes. Finally, some general conclusions about nitrogen
trend and load results are discussed at the end of this section.

Ammonia trends, loads, and yields

Trend analyses of ammonia data were attempted for 93
study sites in three of the four river systems, with the excep-
tion of the Louisiana-Gulf/Pontchartrain system, which had
no sites with an adequate amount of ammonia data to attempt
trend analyses (table 3). Trend results were rejected for 44 of
the 93 sites because of poor model fit (represented as N/A in
table 3).

Of the remaining 49 sites where trend results were
considered acceptable, there were 25 sites (about 51 percent)
where no total trends in concentration were observed during
the study period (table 3). Decreasing total trends in concen-
tration were observed at the remaining 24 sites ranging from
-8.9 to -3.8 percent per year during the study period (table 3,
fig. 8). There were 24 sites (about 49 percent) where no flow-
adjusted trends in concentration were observed during the
study period (table 3, fig. 9). Decreasing flow-adjusted trends
in concentration were observed at the remaining 25 sites rang-
ing from-8.9 to -4.1 percent per year.

Either no trends or decreasing trends in ammonia data
were evident across land-use types, physiographic regions, and
three of the four river systems represented in the study area.
Decreasing total trends results for ammonia were similar to
decreasing trends in flow; however, decreasing flow-adjusted
trend results were also observed, thus indicating that decreas-
ing trends in ammonia data throughout the study area were
not simply related to trends in streamflow but could be caused
by decreases in ammonia sources or changes in management
practices.

Improvements to municipal wastewater treatment facili-
ties could be contributing to decreasing trends in ammonia at
selected sites in the study area. For example, ammonia con-
centrations and loads decreased about 7.5 percent per year on
average at sites 25, 26, and 27 during the study period. These
three sites are located downstream of a large municipal waste-
water treatment facility (site 25 is the nearest to the facility
located only about 1.5 km downstream). The treatment facility
was upgraded to advanced treatment during the mid-1990’s to
reduce high ammonia concentrations and biochemical oxy-
gen demand (BOD) in effluent discharged to Fountain Creek.
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Facility upgrades included retrofitting activated sludge tanks to
advanced waste treatment for increased nitrification (addition
of diffuser system), adding an anoxic zone for denitrification,
increased blower sizes for nitrification to convert ammonia,
and conversion of primary clarifiers to secondary clarifiers
(Ginny Johnson, Colorado Springs Utilities, written commun.,
December 5, 2007). Effluent from the facility accounts for
40-70 percent of the total flow at site 25 (Patrick Edelmann,
U.S. Geological Survey, written commun., October 10, 2006).
The decreasing trends in ammonia at sites 25, 26, and 27 were
likely due to the improvements in the wastewater treatment
facility located upstream.

Similar results were observed for trends in ammonia
loads in which 23 sites (about 47 percent) indicated no trends
in load, but decreasing trends in load were observed at the
remaining 26 sites, ranging from -9.4 to -5.3 percent per year
(table 3, fig. 10). These trends in ammonia loads appear to be
part of a longer trend in ammonia loads as seen in figure 11,
which shows decreasing trends at sites 1, 2, 48, 53, and 68
since the early 1980s.

Ammonia load calculations were attempted for 37 study
sites in three of the four river systems with the exception of
the Louisiana-Gulf/Pontchartrain system, which had no sites
with an adequate amount of ammonia or flow data to attempt
load calculations (table 4). As expected, average annual
ammonia loads were highest for the Mississippi system sites
when compared to loads from the other two systems. Aver-
age annual ammonia loads for some of the major drainages
(not necessarily the most downstream) into the northwestern
Gulf of Mexico were as follows: 13,600 metric tons (T) for
the Mississippi River (site 53); 7,100 T for the Atchafalaya
River (site 68); and 23 T for the Neches (site 76), 317 T for
the Trinity (site 86), and 115 T for the Colorado Rivers (site
108) in the Texas-Gulf system (table 4). For these same sites,
however, the highest yield was 0.0294 metric tons per square
kilometer per year (T-km-2-yr-1) for the Atchafalaya River,
followed by yields for the Trinity, Neches, Mississippi, and
Colorado Rivers, which were 0.00955, 0.00761, 0.00465, and
0.00105 T-km-2-yr-1, respectively (table 4). Load and yield
data indicate that although loads are greatest from the Mis-
sissippi River, other smaller river systems can yield as much,
if not more, ammonia on a per-square-kilometer basis as the
Mississippi River.

Nitrite plus nitrate trends, loads, and yields

Trend analyses of nitrite plus nitrate data were attempted
for 90 study sites in all four river systems (table 5). Trend
results were rejected for 21 sites because of poor model fit
(represented as N/A in table 5). Of the remaining 69 sites
where trend results were considered acceptable, there were 47
sites (about 68 percent) where no total trends in concentration
were observed during the study period (table 5). Decreasing
total trends in concentration were observed at 12 sites rang-
ing from -9.3 to -1.7 percent per year during the study period
(table 5, fig. 12). Increasing total trends in concentration were
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observed at 10 sites, ranging from 4.2 to 39 percent per year
during the study period (table 5, fig. 12). There were 48 sites
(about 70 percent) where no flow-adjusted trends in concentra-
tion were observed during the study period (table 5). Decreas-
ing flow-adjusted trends in concentration were observed at
seven sites, ranging from -8.8 to -3.0 percent per year (table 5,
fig. 13). Increasing flow-adjusted trends in concentration were
observed at 14 sites, ranging from 2.4 to 57 percent per year
during the study period (table 5, fig. 13).

Sites 16, 38, and 39 in the Mississippi system, sites
59, 61, and 64 in the Atchafalaya system, and site 71 in the
Louisiana-Gulf/Pontchartrain system indicated decreases in
the total trends in nitrite plus nitrate concentration results.
National “background” concentration estimates of selected
nutrient constituents are reported in a U.S. Geological Sur-
vey Circular (1999). Waters with concentrations of nutrients
that exceeded these background levels were considered to be
affected by human activities from a variety of land uses. The
national background concentration for nitrite plus nitrate is
about 0.6 mg/L (U.S. Geological Survey, 1999); because all
of the reference concentrations at these seven sites were less
than 0.6 mg/L, decreasing trends at these sites were considered
negligible. Also, trends at most of these seven sites were not
retained when the effects of streamflow were removed (no
flow-adjusted trends found except for sites 39 and 64), which
indicated that trends likely were related to decreasing trends in
streamflow (table 2).

Sites 2, 26, 27, and 53 in the Mississippi system and site
98 in the Texas-Gulf system indicated decreases in total trends
in nitrite plus nitrate concentration results for the study period,
and reference concentrations were all greater than about 1.5
mg/L. Sites 2 and 53 did not retain trends when the effects of
streamflow were removed; thus, the decreasing total trends
at these two sites were likely related to decreasing trends in
streamflow. Decreasing trends were retained when adjusted
for streamflow at sites 26, 27, and 98, potentially indicating
that management practices improved water quality or sources
of nitrite plus nitrate decreased at these sites during the study
period. The decreasing trends at sites 26, 27, and 98 could not
be explained at this time.

Site 50 in the Mississippi system and site 75 in the Texas-
Gulf system indicated no total trends in nitrite plus nitrate
concentrations for the study period, but decreasing trends were
observed in flow-adjusted concentrations (table 5). Refer-
ence concentrations were 0.53 and 0.08 mg/L, respectively,
and consequently, less than the 0.6 mg/L national background
concentration for nitrite plus nitrate (U.S. Geological Survey,
1999); thus, decreasing trends in nitrite plus nitrate at sites 50
and 75 were considered negligible.

Sites 19, 36, and 49 in the Mississippi system and site
103 in the Texas-Gulf system indicated an increase in nitrite
plus nitrate for the study period in both the total and flow-
adjusted trends in concentration (table 5). Reference concen-
trations at these four sites were all less than about 0.2 mg/L.

If trends are applied to the reference concentrations at these
four sites, nitrite plus nitrate concentrations would exceed the
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Figure 10. Trends in ammonia loads at study sites, 1993-2004.
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Figure 11. Annual ammonia loads for selected study sites, 1980-2004.

national background concentration of 0.6 mg/L for nitrite plus
nitrate (U.S. Geological Survey, 1999) at only site 36 during
the study period (the reference concentration at site 36 was
0.16 mg/L; with about a 40 percent per year increase over
the 12-year study period, the reference concentration would
increase to about 0.9 mg/L in 2004). Increasing trends at these
four sites were thus considered negligible during the study
period.

Sites 9, 25, 32, and 41 in the Mississippi system and
site 83 in the Texas-Gulf system also indicated an increase in
nitrite plus nitrate for the study period in both total and flow-
adjusted trends (except for site 41, which did not indicate a
flow-adjusted trend), and reference concentrations for these
five sites were all greater than 1 mg/L (table 5). Because
trends remained when the effect of streamflow was removed
at sites 9, 25, 32, and 83, the trends were likely caused by
influences other than streamflow, such as changes in manage-

ment practices or in nitrogen sources in these basins during the
study period.

Site 9 is located on Yocum Creek near Oak Grove, Ark.
No recent references were available to explain the increasing
trend in nitrite plus nitrate at site 9. Davis and Bell (1998)
reported in their study that nitrite plus nitrate concentrations
were higher in the Yocum Creek Basin than in surrounding
basins due to a higher percentage of agricultural land use in
the basin, and the type of land use included intensive poultry
farming and application of poultry wastes to pastures. The
increase in nitrite plus nitrate at site 25 (Fountain Creek below
Janitell Road below Colorado Springs, Colo.) could be related
to advanced treatment at the wastewater treatment plant previ-
ously mentioned. In typical advanced treatment systems,
most of the conversion of nitrogen occurs in the aerobic zone
(for example, conversion of ammonia to nitrate); however,
reduction of nitrate is limited to that which is returned to the
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Figure 12. Total trends in nitrite plus nitrate concentrations at study sites, 1993-2004.
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Figure 13. Flow-adjusted trends in nitrite plus nitrate concentrations at study sites, 1993-2004.
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process influent and denitrified in the anoxic zone (Viessman
and Hammer, 1985). The increase in nitrate in the plant’s
effluent, and ultimately Fountain Creek at site 25, could be a
by-product of the advanced waste treatment process to reduce
ammonia. Site 32 is located on Flint Creek in Oklahoma and
is part of the Oklahoma Scenic Rivers Program (Oklahoma
Office of the Secretary of the Environment, 2003). A segment
of Flint Creek is listed as impaired due, in part, to “nitrates;”
however, the official source of the impairment is unknown
(Oklahoma Department of Environmental Quality, 2004). No
references were found in the literature to explain increases in
nitrite plus nitrate at site 83.

There were no trends observed in nitrite plus nitrate loads
at 42 sites (about 61 percent) during the study period (table 5,
fig. 14). Decreasing trends in loads were observed at 23 sites
during the study period, ranging from -9.4 to -3.2 percent per
year (table 5, fig. 14). Increasing trends in loads were observed
at only four sites during the study period, ranging from 5.5 to
52 percent per year (table 5, fig. 14).

In looking at trends in nitrite plus nitrate loads for the
period 1980-2004 for sites 2, 48, and 64 (fig. 15), it appears
that loads peaked near the beginning of the study period in
the early to mid-1990s [as also seen for sites 2 and 48 in the
report by Goolsby and others (1999)]. Similar decreasing
trends since the mid 1990s were also observed at sites 53 and
68, although the magnitudes of the recent trend at these two
sites were lower than sites 2, 48, and 64 (table 5, fig. 15).
Therefore, decreasing trends reported in this study for the
past decade at these five sites likely reflect decreases in loads
unique to only the last decade and do not appear to be part
of a longer trend in load, unlike that observed in long-term
ammonia loads.

No trends in nitrite plus nitrate loads were observed at
site 1 (table 5) for the study period. No trend is apparent in
the annual load data for the period 1980-2004 (fig. 15) at
site 1 either, although there appears to be a slight “bump” at
about 1993 in the LOWESS line (which is attributed to scale
in figure 15). The increasing trend in nitrite plus nitrate loads
observed at site 112 during this study (table 5) is part of a
longer term increasing trend as seen in figure 15.

Annual loads, average annual load, and yield calculations
for nitrite plus nitrate were attempted for 56 study sites in all
four river systems (table 6). Nitrite plus nitrate loads were
at least one order of magnitude greater than ammonia loads
where site-by-site comparisons could be made. Average annual
nitrite plus nitrate loads for some of the major drainages (not
necessarily the most downstream) into the northwestern Gulf
of Mexico were as follows: 707,000 T for the Mississippi
River (site 53); 224,000 T for the Atchafalaya River (site 68);
322 and 68 T for the Tangipahoa River (site 70) and Tickfaw
River (site 71), respectively, which empty into Lake Pontchar-
train; and 220 T for the Neches River (site 77), 11,700 T for
the Trinity River (site 87), 2,970 T for the San Antonio River
(site 112), and 111 T for the Nueces River (site 115) from the
Texas-Gulf system. If loads were summed for these eight sites,
the Mississippi River would account for about 75 percent and

the Atchafalaya River would account for about 24 percent of
the total nitrite plus nitrate load entering the northwestern Gulf
of Mexico. For these same sites, however, the top four high-
est yields were 0.927 T-km-2-yr-1 for the Atchafalaya River
followed by 0.658, 0.325, and 0.242 T-km-2-yr-1 for the San
Antonio, the Trinity, and the Mississippi Rivers, respectively.
Nitrite plus nitrate loads indicated that although loads were
greatest from the Mississippi River, smaller rivers yielded as
much nitrite plus nitrate on a per-square-kilometer basis as the
Mississippi River, similar to ammonia yield results.

Nitrite plus nitrate loads and yields for selected sites on
the Mississippi, Arkansas, and Atchafalaya Rivers from this
study for the period 1993-2004 were compared to loads and
yields calculated by Goolsby and others (1999) for the period
1980-96. The mean annual nitrate loads for sites 1, 2, 48, 53,
and 68 were 324,000; 537,000; 18,800; 732,000; and 221,000
T, respectively (Goolsby and others, 1999). Nitrate loads
calculated from this study for the same sites were 337,000;
534,000; 27,100; 707,000; and 224,000 T (table 6), respec-
tively, and thus were comparable to the previous study results.
Nitrate yields from the study by Goolsby and others (1999)
were 0.62, 0.29, 0.05, and 0.3 T-km-2-yr-1 for sites 1, 2, 48,
and the combined Mississippi and Atchafalaya Rivers (sites
53 and 68). For this study, yields were 0.640 (site 1), 0.289
(site 2), 0.0662 (site 48), and 0.294 T-km-2-yr-1 (sites 53 and
68 combined), which were comparable to the previous study
results.

Total nitrogen trends, loads, and yields

Trend analyses of total nitrogen data were attempted for
61 study sites (table 7). Trend results were rejected for 20 sites
because of poor model fit (represented as N/A in table 7). Of
the remaining 41 sites where trend results were considered
acceptable, there were 35 sites (about 85 percent) where no
total trends in concentration were observed during the study
period (table 7). Decreasing total trends in concentration were
observed at two sites, which were -2.3 and -1.8 percent per
year for site 16 in the Mississippi system and site 73 in the
Louisiana-Gulf/Pontchartrain system, respectively, during the
study period (table 7, fig. 16). Increasing total trends in con-
centration were observed at four sites, which were 7.0 and 4.1
percent per year for sites 9 and 32, respectively, in the Missis-
sippi system, and 6.8 and 3.8 percent per year for sites 61 and
65, respectively, in the Atchafalaya system during the study
period (table 7, fig. 16). There were 27 sites (about 66 percent)
where no flow-adjusted trends in concentration were observed
during the study period (table 7). Decreasing flow-adjusted
trends in concentration were observed at two sites, which were
-1.5 and -1.8 percent per year for sites 16 and 73, respectively,
for the study period (table 7, fig. 17). Increasing flow-adjusted
trends in concentration were observed at 12 sites, ranging from
1.8 to 14 percent per year during the study period (table 7, fig.
17).

Decreasing total and flow-adjusted trends in total nitro-
gen concentrations were observed at site 16 in the Mississippi
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Figure 14. Trends in nitrite plus nitrate loads at study sites, 1993-2004.
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system and site 73 in the Louisiana-Gulf/Pontchartrain system
indicating that the trends were not simply related to decreas-
ing trends in streamflow, but could be caused by management
changes or changes in nitrogen sources within the drainage
areas at these two sites. For site 16, the decreasing trend

was slight (about 2 percent), and the reference total nitrogen
concentration was low (0.41 mg/L, table 7). The national
background concentration for total nitrogen is 1 mg/L (U.S.
Geological Survey, 1999). Also, the USEPA has developed
nutrient criteria recommendations for rivers and streams in 14
nutrient “ecoregions” (U.S. Environmental Protection Agency,
2007). Site 16 is located in Nutrient Ecoregion XI (central
and eastern forested uplands), and the USEPA recommenda-
tion for a total nitrogen criteria aggregated for this ecore-

gion is 0.31 mg/L (U.S. Environmental Protection Agency,
2000b). The reference concentration for total nitrogen at site
16 was less than the national background concentration, and
total nitrogen concentrations should approach or fall below the
recommended USEPA ecoregion criteria by 2004 if the trend
is applied. Thus, the decreasing trend at site 16 was consid-
ered negligible. No references were found in the literature to
explain the decrease in total nitrogen at site 73.

Sites 9 and 32 in the Mississippi system and sites 61
and 65 in the Atchafalaya system indicated increases in total
nitrogen in both the total and flow-adjusted trends in concen-
tration; therefore, trends were not influenced by streamflow
patterns, but could indicate changes in management practices
or increases in nitrogen sources in these watersheds. Increases
in total nitrogen were similar to increases in nitrite plus nitrate
at site 9, which is located on Yocum Creek in Arkansas. As
previously mentioned, site 9 was included in a study by Davis
and Bell (1998), however, their study did not include analy-
sis of total nitrogen. No other references were found in the
literature to explain the increase in total nitrogen at site 9.
Similarly, no references were found in the literature to explain
the increases in total nitrogen at sites 32 or 61 [however, as
previously stated, site 32 is located on Flint Creek in Okla-
homa, and a segment of Flint Creek is listed as impaired due
to nitrates (Oklahoma Department of Environmental Quality,
2004)]. The reference concentration at site 65 was less than the
national background concentration of 1 mg/L for total nitro-
gen (U.S. Geological Survey, 1999). Site 65 is located in
Nutrient Ecoregion IX (southeastern temperate forested plains
and hills), and the USEPA recommendation for a total nitro-
gen criteria aggregated for this ecoregion is 0.69 mg/L (U.S.
Environmental Protection Agency, 2000a). Because the total
nitrogen reference concentration at site 65 was less than the
national background concentration, and concentrations of total
nitrogen are not projected to exceed the recommended USEPA
ecoregion criteria in 2004 if the trend is applied, the trend at
site 65 is considered negligible.

Increasing flow-adjusted trends in total nitrogen concen-
tration were observed at sites 2, 28, 33, and 35 in the Missis-
sippi system, sites 56 and 59 in the Atchafalaya system, and
sites 81 and 104 in the Texas-Gulf system; therefore, these
trends could indicate changes in management practices or
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increases in nitrogen sources at these sites during the study
period. Reference concentrations at sites 81 and 104 were low
(Iess than 0.3 mg/L). USEPA recommended ecoregion total
nitrogen criteria for sites 81 and 104 are 0.69 and 0.56 mg/L,
respectively (U.S. Environmental Protection Agency, 2000a
and 2001). If trends were applied to reference concentrations
at sites 81 and 104, total nitrogen concentrations likely would
not exceed the national background concentration nor asso-
ciated ecoregion criteria by 2004; thus, increasing trends at
these two sites were considered negligible. The drainage area
for site 2 includes the upper Mississippi and Missouri Rivers;
thus, an explanation for the increasing trend in total nitrogen at
this site is beyond the scope of this report.

The flow-adjusted trend for total nitrogen increased at site
28 along the Elk River in Missouri during the study period.
The Elk River is listed as an impaired waterbody because of
nitrogen concentrations that were shown to be increasing over
the past 35 years (Missouri Department of Natural Resources,
2004). Although there could be other factors that contribute to
increasing nitrogen, recent TMDL and watershed restoration
proposals indicate the most significant contribution of nitrogen
is attributed to the poultry industry as there are approximately
275 poultry AFOs within the Elk River watershed (Missouri
Department of Natural Resources, 2004 and 2006). These
reports state that the increase is related to point sources, due to
population increases caused by availability of more jobs in the
poultry industry, and to nonpoint sources, due to application of
poultry litter on agricultural fields. No references were found
in the literature to explain the increases in total nitrogen at
sites 33, 35, 56, and 59.

There were no trends observed in total nitrogen loads at
28 sites (about 68 percent) during the study period (table 7).
Decreasing trends in total nitrogen loads were observed at
12 sites during the study period and ranged from -7.3 to -2.7
(2 sites) percent per year (fig. 18). Increasing trends in total
nitrogen loads were observed only at site 112 located on the
San Antonio River in the Texas-Gulf system during the study
period (about a 5-percent per year increase in total nitrogen
load).

The recent decreasing trends at sites 2, 48, 53, and
68 (table 7) appear to be part of longer decreasing trends
observed since the early 1980s at these four sites (fig. 19). No
trends in total nitrogen loads were observed at site 1 in both
the current study period (table 7) and the 1980-2004 time
period (fig. 19). No trend in total nitrogen loads was observed
at site 64 for the study period, which is in contrast to annual
loads plotted since 1980 that seem to indicate a slight decreas-
ing over time (fig. 19); however, annual loads plotted in figure
19 since 1993 are scattered, thus validating the no-trend result
for the study period.

The recent increasing trend in load at site 112 (table 7)
is a recent trend, as total nitrogen loads at this site have been
stable from 1980 to about 1997 (fig. 19). There were no total
or flow-adjusted trends in concentration observed at site 112
for the study period; however, there was a 7.9 percent per year
increase in flow observed at site 112 for the study period. The
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Figure 18. Trends in total nitrogen loads at study sites, 1993-2004
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Figure 19. Annual total nitrogen loads for selected study sites, 1980-2004.
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recent increasing trend in total nitrogen load at site 112 likely
is related to an increase in streamflow at this site.

Annual loads, average annual load, and yield calcula-
tions for total nitrogen were attempted for 35 study sites in all
four river systems (table 8). When total nitrogen, ammonia,
and nitrite plus nitrate loads were compared at key sites in the
four river systems, the nitrite plus nitrate loads accounted for
about 70-90 percent of the total nitrogen loads (tables 4, 6, and
8). Average annual total nitrogen loads for some of the major
drainages (not necessarily the most downstream) into the
northwestern Gulf of Mexico were as follows: 992,000 T for
the Mississippi River (site 53); 355,000 T for the Atchafalaya
River (site 68); 1,150 T for the Tangipahoa River (site 70) and
300 T for Tickfaw River (site 71), both of which empty into
Lake Pontchartrain; and 507 T for the Colorado River (site
100) and 3,450 T for the San Antonio River (site 112) from
the Texas-Gulf system. Again, the Mississippi and Atchafalaya
systems account for nearly all of the total nitrogen load into
the northwestern Gulf of Mexico. Yields for these same sites,
in order of magnitude, were 1.47, 0.764, 0.690, 0.469, 0.340,
and 0.00627 T-km-2-yr-1 for the Atchafalaya, San Antonio,
Tangipahoa, Tickfaw, Mississippi, and Colorado Rivers,
respectively. Similar to ammonia and nitrite plus nitrate yield
observations, total nitrogen yields from smaller rivers gener-
ally were as large or larger than yields from the Mississippi
River.

Total nitrogen loads and yields for selected sites on the
Mississippi, Arkansas, and Atchafalaya Rivers from this study
for the period 1993 to 2004 were compared to loads and yields
calculated by Goolsby and others (1999) for the period 1980
to 1996. The mean annual total nitrogen loads from sites 1, 2,
48, 53, and 68 from Goolsby and others (1999) were 496,000,
841,000, 54,900, 1,180,000, and 386,000 T, respectively. Total
nitrogen loads for the same sites calculated from this study
were 480,000, 770,000, 45,900, 992,000, and 355,000 T (table
8), respectively, which were all slightly lower than the previ-
ous study results, reflecting decreasing trends in streamflow at
all of these sites during the last decade. Total nitrogen yields
from Goolsby and others (1999) were 0.94, 0.46, 0.13, and
0.49 T-km-2-yr-1 for sites 1, 2, 48, and the combined Missis-
sippi and Atchafalaya Rivers (sites 53 and 68). For this study,
total nitrogen yields were 0.912, 0.417, 0.112, and 0.427
T-km-2-yr-1 for the same sites, respectively, which were com-
parable to the previous study results.

Relation of trends in nitrogen to trends in source
data and landscape attributes

There were some statistically significant results from the
WLS regression analyses where trends in nitrogen-source data
and landscape attributes were compared to trends in nitrogen
constituents from this study (table 9). Coefficients of deter-
mination (R2) for the statistically significant results were all
less than about 0.3 indicating that very little of the variance
was explained, and relations were considered poor. Therefore,
statistically significant results of the WLS regression analyses

are presented in this section relative to nitrogen trends, but the
reader is cautioned against over-interpretation of the results.

Population throughout most of the study area either
remained the same or increased during the study period (fig.
20). Such increasing trends could explain increasing trends in
nitrite plus nitrate and total nitrogen observed near urban areas
(point sources) or where drainages included a combination of
urban and agricultural areas. Results of the WLS regression
analyses did not indicate any statistically significant results
where trends in population were compared to trends in nitro-
gen constituents observed at study sites (table 9).

Nitrogen from atmospheric deposition generally
increased for locations in the center part of the study area from
southeastern Colorado through central Oklahoma and northern
and eastern Texas during the study period (fig. 21). Nitrogen
from atmospheric deposition decreased in south-central Texas,
eastern Oklahoma, northwestern Arkansas, and southwestern
Missouri during the study period (fig. 21). Weighted-least-
squares regression results indicated a potential inverse relation
between trends in nitrogen from atmospheric deposition and
flow-adjusted trends in nitrite plus nitrate at study sites (table
9), which indicated that at locations where atmospheric depo-
sition increased, there were decreasing trends in flow-adjusted
nitrite plus nitrate during the study period. Trends in atmo-
spheric deposition were, therefore, not the controlling factor
on trends in nitrite plus nitrate.

Increased trends in nitrogen from fertilizer were observed
at sites in north-central Texas, eastern Oklahoma, northern
Arkansas, and southern Missouri (fig. 22). Weighted-least-
squares regression results suggest that increasing trends in
nitrogen from fertilizer could be related to increasing flow-
adjusted trends in nitrite plus nitrate at study sites (table 9).
Increasing trends in nitrogen from manure were observed at
some of the same sites as were trends in fertilizer (figs. 22 and
23). Weighted-least-squares regression results suggest that
increasing trends in nitrogen from land application of manure
could be related to increasing trends in both total and flow-
adjusted trends in nitrite plus nitrate and total nitrogen at study
sites (table 9).

There were only seven sites where management practices
increased or decreased more than 1 percent of their total drain-
age areas from 1992 to 1997 (table 10). Of these seven sites,
only one corresponded to any trends in nitrogen data for the
study period: there was a slight increase in both total and flow-
adjusted trends in nitrite plus nitrate for the study period at
site 103. During the period 1992-1997, conservation practices
(contour farming or terracing) decreased by 9.6 percent of
the total drainage area for site 103. Because WLS regression
analyses could not be completed by using the conservation
practices data and trends in nitrite plus nitrate, it is unknown if
the increasing trend in nitrite plus nitrate actually was affected
by the decrease in conservation practices at site 103.
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Overall conclusions about nitrogen trends and
loads for the study area

In general, there were few trends observed in the nitro-
gen data at study sites during the study period; no trends were
observed in about 63 percent of all nitrogen trend analyses
attempted. Although some patterns in the nitrogen data did
exist where trends were attempted, no regional patterns could
be confirmed because of poor spatial representation of the
trends sites.

Decreasing trends in flow-adjusted concentrations of
ammonia were observed at 25 sites. No increasing trends in
concentrations of ammonia were noted at any sites. Flow-
adjusted concentrations of nitrite plus nitrate decreased at 7
sites and increased at 14 sites. Flow-adjusted concentra-
tions of total nitrogen decreased at 2 sites and increased at
12 sites. Improvements to municipal wastewater treatment
facilities contributed to the decline of ammonia concentra-
tions at selected sites. Notable increasing trends in nitrite
plus nitrate and total nitrogen at selected study sites were
attributed to both point and nonpoint sources. Trend patterns
in total nitrogen generally followed trend patterns in nitrite
plus nitrate, which was understandable given that nitrite plus
nitrate loads generally were 70-90 percent of the total nitrogen
loads at most sites. Although population increased throughout
the study area during the study period, there was no observed
relation between increasing trends in nitrogen in study area
streams and increasing trends in population. With respect
to other nitrogen sources, statistical results did suggest that
increasing trends in nitrogen could be related to increasing
trends in nitrogen from either commercial fertilizer use and/or
land application of manure.

Loads of ammonia, nitrite plus nitrate, and total nitrogen
decreased during the study period, but some trends in nitro-
gen loads were part of long-term decreases since 1980. For
example, ammonia loads were shown to decrease at nearly all
sites over the past decade, but at selected sites, these decreas-
ing trends were part of much longer trends since 1980. The
Mississippi and Atchafalaya Rivers contributed the high-
est nitrogen loads to the northwestern Gulf of Mexico as
expected; however, nitrogen yields from smaller rivers had
similar or higher yields than from the Mississippi River.

Phosphorus

Specific details about trend, load, and yield results for
orthophosphorus and total phosphorus data are discussed at
the beginning of this section. These results are then related
to potential trends in source and landscape attributes. Finally,
some general conclusions about phosphorus trend and load
results are discussed at the end of this section.

Orthophosphorus trends, loads, and yields

Trend analyses of orthophosphorus data were attempted
for 68 study sites in three of the four river systems, with the
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exception of the Louisiana-Gulf/Pontchartrain system, which
had no sites with an adequate amount of orthophosphorus
data to attempt trend analyses (table 11). Trend results were
rejected for 34 sites because of poor model fit (represented as
N/A in table 11). Of the remaining 34 sites where trend results
were considered acceptable, there were 17 sites (50 percent)
where no total trends in concentration were observed during
the study period (table 11). Decreasing total trends in con-
centration were observed at 11 sites ranging from -7.2 to -2.6
percent per year during the study period (table 11, fig. 24).
Increasing total trends in concentration were observed at six
sites, ranging from 2.5 to 15 percent per year during the study
period (table 11, fig. 24). There were 17 sites (50 percent)
where no flow-adjusted trends in concentration were observed
during the study period (table 11). Decreasing flow-adjusted
trends in concentration were observed at 10 sites, ranging
from -7.3 to -2.5 percent per year (table 11, fig. 25). Increas-
ing flow-adjusted trends in concentration occurred at seven
sites, ranging from 3.0 to 13 percent per year during the study
period (table 11, fig. 25).

Decreasing total trends in orthophosphorus concentra-
tions were observed at sites 1, 38, 39, 42, 45 in the Mississippi
system, and sites 59 and 61 in the Atchafalaya system dur-
ing the study period; reference concentrations at these seven
sites were less than about 0.1 mg/L. Although there are no
secondary water-quality standards for orthophosphorus, the
USEPA recommends that total phosphates should not exceed
0.05 mg/L in a stream where it enters a lake or reservoir (U.S.
Environmental Protection Agency, 1986). If trends are applied
to the reference concentrations at these seven sites, orthophos-
phorus concentrations would likely approach or fall below the
recommended USEPA concentration during the study period.
Decreasing trends at these seven sites were, therefore, con-
sidered negligible. In addition, trends at site 38 and 59 were
not retained when the effects of streamflow were removed;
therefore, total trends at these two sites likely were related to
decreasing trends in streamflow.

Decreasing total trends in orthophosphorus concentration
were also observed at sites 25, 26, 27 in the upper Missis-
sippi system, and 112 in the Texas-Gulf system, and refer-
ence concentrations were all greater than about 1 mg/L. In
addition, decreasing trends were retained when the effects of
streamflow were removed at these four sites (table 11), indi-
cating that the trends were not simply influenced by decreas-
ing trends in streamflow. Sites 25, 26, and 27 were located
downstream from the wastewater treatment plant previously
mentioned. Although upgrades installed in the mid-1990’s
at this particular plant targeted ammonia and BOD removal,
decreases in orthophosphorus at these three sites could be a
secondary benefit of advanced waste treatment and clarifier
improvements, which are also processes that can be used for
phosphorus removal (Viessman and Hammer, 1985). Site 112
is located on the San Antonio River. The San Antonio River
Authority (2003) reported that reductions in phosphorus levels
and improvements in water quality in the San Antonio River
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were related to improvements in municipal wastewater treat-
ment.

Decreasing trends in flow-adjusted orthophosphorus
were observed at site 87 on the Trinity River in the Texas-Gulf
system (although there were no total trends in concentration).
In the mid-1990’s, Van Metre and Reutter (1995) reported a
decreasing trend in phosphorus loads at the same site (located
about 160 miles downstream from the City of Dallas) for data
collected prior to 1991, but the cause of the decreasing trend
was not determined.

Increasing total and flow-adjusted trends in orthophos-
phorus were observed at sites 24, 28, 33, and 48 — all in the
Mississippi system (table 11). Reference concentrations at
these four sites were all lower than the USEPA recommenda-
tion of 0.05 mg/L orthophosphorus. If trends were applied to
reference concentrations at these four sites, orthophosphorus
concentrations would remain below or barely exceed 0.05
mg/L; thus, trends at these four sites were considered negli-
gible. An increasing flow-adjusted trend in orthophosphorus
occurred at site 9 in the Mississippi system (although there
were no total trends in concentration). The reference con-
centration was 0.03 mg/L and would not exceed the USEPA
recommendation of 0.05 mg/L during the study period; thus,
the trend at site 9 was also considered negligible.

Increasing total and flow-adjusted trends were observed
at sites 22 and 32 in the Mississippi system (table 11) indicat-
ing that trends were not influenced by streamflow but could
be caused by changes in management practices or sources
of phosphorus at this site. Site 22 is located on Monument
Creek near the United States Air Force Academy in Colorado.
The increasing trends in orthophosphorus at site 22 during
this study period could not be explained at this time. Results
from a study by Edelmann and others (2002) indicated that
orthophosphorus concentrations tended to be higher during
storm flows than during base flows for a location near site
22, but their results did not provide an overall trend for their
study period, which was 1981 through 2001. Site 32 is located
on Flint Creek in Oklahoma, and a segment of Flint Creek is
listed as impaired due, in part, to total phosphorus; however,
the official source of the impairment is unknown (Oklahoma
Department of Environmental Quality, 2004).

There were no trends observed in orthophosphorus
loads at 15 sites (about 44 percent) during the study period
(table 11). Decreasing trends in orthophosphorus loads were
observed at 17 sites for the study period (fig. 26), ranging from
-7.9 to -2.5 percent per year (table 11). There were increas-
ing trends in orthophosphorus loads observed at two sites.

An increase of 37 percent per year was observed at site 19,
and an increase of 7.6 percent per year was observed at site
22; however, reference loads at these two sites were 12 and 8
kg/day, respectively, and trends in orthophosphorus loads were
considered negligible.

Decreasing trends in orthophosphorus loads at sites 2, 53,
and 68 during the study period cannot be completely con-
firmed in looking at annual load data for the time period 1980-
2004 plotted in figure 27. There is a lengthy gap in the annual

load data at site 2 from about 1987 to 1995; load data plotted
after 1995 appear to be decreasing but are also scattered (fig.
27). The decreasing trends in orthophosphorus loads at sites
53 and 68 appear to be decreasing since 1980, but the decrease
is very slight (fig. 27). No trends were observed in orthophos-
phorus loads at sites 1 and 48 during the study period. These
results appear to be confirmed in looking at annual loads plot-
ted at site 1 for the period 1980-2004 in figure 27. Although
there appears to be a decreasing trend in annual loads plotted
for site 48 since 1980 (LOWESS line, site 48, fig. 27), the data
are scattered, likely indicating no trend since 1980.

Annual loads, average annual load, and yield calculations
for orthophosphorus were attempted for 29 study sites in three
of the four river systems, with the exception being the Louisi-
ana-Gulf/Pontchartrain system, which had no sites that had an
adequate amount of orthophosphorus data to attempt load and
yield calculations (table 12). Average annual orthophosphorus
loads for some of the major drainages (not necessarily the
most downstream) into the northwestern Gulf of Mexico were
as follows: 30,100 T for the Mississippi River (site 53); 11,900
T for the Atchafalaya River (site 68); and 1,290 T and 323 T
for the Trinity River (site 87) and the San Antonio River (site
112), respectively, in the Texas-Gulf system. Again, the Mis-
sissippi and Atchafalaya systems account for nearly all of the
orthophosphorus load into the northwestern Gulf of Mexico.
Yields for these same sites, in order of magnitude, were
0.0716, 0.0491, 0.0357, and 0.0103 T-km-2-yr-1 for the San
Antonio, Atchafalaya, Trinity, and Mississippi Rivers, respec-
tively. Similar to other yield observations, orthophosphorus
yields from smaller rivers were equal to or greater than yields
from the Mississippi River.

Orthophosphorus loads and yields for selected sites on
the Mississippi, Arkansas, and Atchafalaya Rivers from this
study for the period 1993-2004 were compared to loads and
yields calculated by Goolsby and others (1999) for the period
1980-96. The mean annual orthophosphorus loads from sites
1, 2,48, 53, and 68 from Goolsby and others (1999) were
11,200; 19,100; 1,900; 30,800; and 11,000 T, respectively.
Orthophosphorus loads for the same sites calculated from
this study were 10,800; 21,900; 1,980; 30,100; and 11,900 T
(table 12), respectively, which were comparable to the previ-
ous study. Orthophosphorus yields from Goolsby and others
(1999) were 0.021, 0.01, 0.005, and 0.013 T-km-2-yr-1 for
sites 1, 2, 48, and the combined Mississippi and Atchafalaya
Rivers (sites 53 and 68). For this study, orthophosphorus
yields were nearly identical to the previous study results (table
12).

Total phosphorus trends, loads, and yields

Trend analyses of total phosphorus data were attempted
for 80 study sites in all four river systems (table 13). Trend
results were rejected for 28 sites because of poor model fit
(represented as N/A in table 13). Of the remaining 52 sites
where trend results were considered acceptable, there were 32
sites (about 62 percent) where no total trends in concentration
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Figure 27. Annual orthophosphorus loads for selected study sites, 1980-2004.

were observed during the study period (table 13). Decreas-
ing total trends in concentration were observed at six sites
ranging from -8.8 to -5.0 percent per year during the study
period (table 13, fig. 28). Increasing total trends in concentra-
tion occurred at 14 sites ranging from 4.1 to 13 percent per
year during the study period (table 13, fig. 28). There were

29 sites (about 56 percent) where no flow-adjusted trends in
concentration were observed during the study period (table
13). Decreasing flow-adjusted trends in concentration were
observed at six sites ranging from -9.0 to -3.9 percent per year
(table 13, fig. 29). Increasing flow-adjusted trends in concen-
tration occurred at 17 sites, ranging from 3.0 to 56 percent per
year during the study period (table 13, fig. 29).

Decreasing total and flow-adjusted trends in total phos-
phorus occurred at sites 34 and 46 in the Mississippi system
and sites 89, 106, 112, and 113 in the Texas-Gulf system (table
13, figs. 28 and 29), indicating that the decreasing trends

were not related to decreasing trends in streamflow but could
be caused by changes in management practices or sources of
phosphorus within the drainage areas of these sites. Refer-
ence concentrations at sites 34, 46, and 106 were less than

0.1 mg/L (table 13). The national background concentration
for total phosphorus is 0.1 mg/L (U.S. Geological Survey,
1999). Site 34 is located in nutrient ecoregion XI (central and
eastern forested uplands), and the USEPA recommendation for
total phosphorus criteria aggregated for this ecoregion is 0.01
mg/L. (U.S. Environmental Protection Agency, 2000b). Site
46 is located in nutrient ecoregion IX (southeastern temperate
forested plains and hills), and the USEPA recommendation

for total phosphorus criteria aggregated for this ecoregion is
0.037 mg/L (U.S. Environmental Protection Agency, 2000a).
Site 106 is located in nutrient ecoregion IV (Great Plains grass
and shrublands), and the USEPA recommendation for total
phosphorus criteria aggregated for this ecoregion is 0.023 mg/



RESULTS

027

32 29
B 0 gip @11 @13
2 34
18
°
46
450 gl42 @047
o
54 44943 56 A o4
56 059
e 60
@58 065 s
o5l 063
094 &
o2 51
o84 052
09 086 67
0100 S6
53
AAT
101 78 68 o710 .
o88 .

10 105
103
1044106
110111
.112
vus

O114

0108
C>109

‘. 90
89
91.

107009 ©%,

®74
073 :’

Base from U.S. Geological Survey
digital data, 1970, 1:2,000,000 Albers
Equal-Area Conic projection Standard
parallels 29°30’N and 45°30'N, central
meridian 96°00'W

200 400 Kilometers
| |

o—T0

I I
200 400 Miles

EXPLANATION
[ ] Mississippi system
[ ] Atchafalaya system

[ | Louisiana-Gulf/Pontchartrain system

[ ] Texas-Gulf system

Trends in percent per year

oo 444 >>>

>10

5to <10
0to <5
0to>-5
-5to >-10
<-10

No trend
Attempted, not analyzed

Figure 28. Total trends in total phosphorus concentrations at study sites, 1993-2004.
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L (U.S. Environmental Protection Agency, 2001).  Because
reference concentrations for these three sites were less than the
national background concentration, and concentrations were
projected to be lower or approach associated ecoregion criteria
recommendations in 2004 if trends are applied, the decreasing
trends at sites 34, 46, and 106 were considered negligible.

Reference concentrations were about 1 mg/L or greater at
sites 89, 112, and 113. Decreasing trends in total phosphorus
at site 89 could not be explained at this time. The magnitude
of decreasing trends in total phosphorus at site 112 were
similar to the magnitude of decreasing orthophosphorus trends
at this site (tables 11 and 13; note: site 113 is also located on
the San Antonio River downstream of site 112). As discussed
earlier, the San Antonio River Authority (2003) reported that
reductions in phosphorus levels and improvements in water
quality in the San Antonio River were related to improvements
in municipal wastewater treatment.

Increasing total and flow-adjusted trends in total phos-
phorus occurred at sites 1, 28, 30, 31, 32, 33, 48, 53 in the
Mississippi system, sites 56 and 68 in the Atchafalaya system,
site 71 in the Louisiana-Gulf/Pontchartrain system, and sites
78 and 90 in the Texas-Gulf system (table 13, figs. 28 and 29)
indicating that trends were not influenced by streamflow but
could be caused by changes in phosphorus sources or man-
agement practices. Reference concentrations at most of these
13 sites were less than or only slightly greater than 0.1 mg/L
(table 13, except for site 31, which had a reference concentra-
tion of about 0.5 mg/L). If trends are applied to the reference
concentrations at these 13 sites, then total phosphorus con-
centrations in 2004 are projected to approach or exceed the
national background concentration (U.S. Geological Survey,
1999) and associated USEPA ecoregion criteria recommenda-
tions for total phosphorus at each site (U.S. Environmental
Protection Agency, 2007).

It is important to note that total phosphorus increased
at sites 1, 48, 53, 56, and 68, which are mainstem sites on
the Mississippi, Arkansas, Red, and Atchafalaya Rivers. The
drainage areas for these five sites are extremely large and com-
plex, thus, an explanation as to the increase in total phospho-
rus at these five sites is beyond the scope of this report.

Sites 30 and 33 are located on the Illinois River, and site
32 is located on Flint Creek in Oklahoma. The Illinois River
and Flint Creek are part of the Oklahoma Scenic Rivers Pro-
gram (Oklahoma Office of the Secretary of the Environment,
2003). Segments of these two streams are listed as impaired
because of phosphorous (as well as pathogens), but the official
sources of those impairments are listed as unknown (Okla-
homa Department of Environmental Quality, 2004). Site
31 is located on Sager Creek, which is a tributary of Flint
Creek in the Illinois River Basin. Sager Creek is not listed
as impaired due to phosphorus (Oklahoma Department of
Environmental Quality, 2004), but is part of the Scenic Rivers
monitoring program that includes the Illinois River and Flint
Creek (Oklahoma Office of the Secretary of the Environment,
2003).
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Increasing trends in total phosphorus at sites 28 and 78
could not be explained at this time. Site 71 is located on the
Tickfaw River in Louisiana. Although the increasing trends
in total phosphorus at site 71 could not be explained at this
time, phosphorus is listed as an impairment in parts of this
watershed because of infiltration and outflows from failing
wastewater collection systems, according to a report by the
Louisiana Department of Environmental Quality (2000).

No explanation for an increasing trend in total phospho-
rus at site 90, located on the East Fork San Jacinto River in
Texas, was found in the literature. Sneck-Fahrer and others
(2005) sampled inflows into Lake Houston near Houston,
Tex., for the period 2000-04. In their report, the East Fork
San Jacinto River represented the eastern part of the Lake
Houston watershed, which is less densely populated than the
western part of the watershed. Sneck-Fahrer and others
(2005) reported a decreasing trend in dissolved phosphorus
data for a sampling site on the eastern part of Lake Houston
itself, but not specifically at site 90.

Site 51 indicated an increasing trend in total phosphorus
for the study period (total trend only, table 13). Site 51 is
located near the mouth of the Yazoo River in the Mississippi
system downstream from some of the most intense row-crop
agricultural production areas in the United States. ~Although
the increasing trend in total phosphorus at site 51 could be
related to agriculture, Kleiss and others (2000) pointed out that
phosphorus is used less in the Yazoo River Basin than in many
parts of the Midwest. Another possible explanation for the
increasing trend in total phosphorus is related to sediment in
the Yazoo River (Coupe, 2002). Phosphorus binds to sediment,
especially to fine clays, which are prevalent in streams of the
Yazoo River Basin; however, an increasing trend in suspended
sediment was not observed at site 51 during the study period
(sediment trend results are presented in the next section).
Thus, the increasing trend in total phosphorus at site 51 for the
study period cannot be explained at this time.

Although there were no total trends in total phosphorus
concentrations at sites 2, 9, and 35 in the Mississippi system
and site 59 in the Atchafalaya system, there were increasing
flow-adjusted trends observed at these four sites, possibly
indicating changes in management practices or increases in
phosphorus sources during the study period. The drainage
area at site 2 is large and complex; thus, an explanation for an
increasing flow-adjusted trend at this site is beyond the scope
of this report. The increasing trend in total phosphorus at
site 9 is not entirely known at this time; however, this site was
included in a study by Davis and Bell (1998) that reported
total phosphorus concentrations were slightly higher for site
9 than for surrounding basins due to the amount of and type
of agricultural land use (poultry farming). Site 35 is located
on the Baron Fork River in Oklahoma; no stream segments on
the Baron Fork River are currently listed (2007) as impaired
due to phosphorus (Oklahoma Department of Environmental
Quality, 2004). However, a segment of the Baron Fork River
has been included in the 2006 Draft 303d list for streams in
Oklahoma as impaired due, in part, to phosphorus [Oklahoma
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Department of Environmental Quality, 2006 (draft)]. Site 59 is
located on the Washita River in Oklahoma, and the increasing
trends in total phosphorus at site 59 cannot be explained at this
time.

There were no trends observed in total phosphorus
loads at 42 sites (about 81 percent) during the study period
(table 13). Decreasing trends in total phosphorus loads were
observed at nine sites for the study period, ranging from
-7.8 to -3.9 percent per year (table 13, fig. 30). There was an
increasing trend in total phosphorus loads observed at one site;
an increase of 11 percent per year at site 31 on Sager Creek,
which is a tributary of Flint Creek in the Illinois River Basin.

No trends in total phosphorus loads were observed at
sites 1, 2, 48, 53, 64, and 68 during the study period (table 13).
Similarly, no trends in total phosphorus loads were observed
during the period 1980-2004 at sites 2, 48, 53, and 68 as plot-
ted in figure 31. Although LOWESS lines for sites 1 and 64
indicate increasing and decreasing trends, respectively, for the
period 1980-2004 (fig. 31), the scatter of the data in these plots
clearly supports no trends in total phosphorus loads at these
two sites (table 13, fig. 31). The decreasing trend in total phos-
phorus loads at site 112 on the San Antonio River is part of a
much longer decreasing trend in loads that has been occurring
since 1980 (fig. 31), likely due to improvements in municipal
wastewater treatment facilities as previously presented (San
Antonio River Authority, 2003).

Annual loads, average annual load, and yield calculations
for total phosphorus were attempted for 35 study sites in all
four river systems (table 14). When orthophosphorus and total
phosphorus loads were compared at key sites in the four river
systems, the orthophosphorus loads accounted for only about
20-30 percent of the total phosphorus loads (tables 12 and
14). Average annual total phosphorus loads for some of the
major drainages (not necessarily the most downstream) into
the northwestern Gulf of Mexico were as follows: 101,000 T
for the Mississippi River (site 53); 40,200 T for the Atchafa-
laya River (site 68); 206 T for the Tangipahoa River (site 70)
in the Louisiana-Gulf/Pontchartrain system; and 2,870 T and
998 T for the Trinity River (site 86) and the Colorado River
(site 108), respectively, in the Texas-Gulf system. Again, the
Mississippi and Atchafalaya systems accounted for most of the
total phosphorus load into the northwestern Gulf of Mexico.
Yields for these same sites, in order of magnitude, were
0.166, 0.123, 0.0862, 0.0347, and 0.00912 T-km-2-yr-1 for the
Atchafalaya, Tangipahoa, Trinity, Mississippi, and Colorado
Rivers, respectively. Similar to other yield observations, total
phosphorus yields from smaller rivers were equal to or greater
than yields from the Mississippi River.

Total phosphorus loads and yields for selected sites on
the Mississippi, Arkansas, and Atchafalaya Rivers from this
study for the period 1993-2004 were compared to loads and
yields calculated by Goolsby and others (1999) for the period
1980-96. The mean annual total phosphorus loads from sites
1, 2,48, 53, and 68 from Goolsby and others (1999) were
39,400; 68,700; 5,100; 97,000; and 39,500 T, respectively.
Total phosphorus loads for the same sites calculated from

this study were 48,800; 78,600; 5,020; 101,000; and 40,200

T (table 14), respectively, indicating higher loads of total
phosphorus in the Ohio and Upper Mississippi Rivers (sites 1
and 2, respectively) calculated for this study than in the previ-
ous study. Total phosphorus yields from Goolsby and others
(1999) were 0.075, 0.037, 0.013, and 0.042 T-km-2-yr-1 for
sites 1, 2, 48, and the combined Mississippi and Atchafalaya
Rivers (sites 53 and 68). For this study, total phosphorus yields
for the same sites were 0.0928, 0.0425, 0.0122, and 0.0447,
T-km-2-yr-1 indicating higher yields from the Ohio and Upper
Mississippi Rivers (sites 1 and 2, respectively) calculated for
this study than in the previous study (table 14).

Relation of trends in phosphorus to trends in
source data and landscape attributes

There were some statistically significant results from
the WLS regression analyses where trends in phosphorus-
source data and landscape attributes were compared to trends
in phosphorus constituents from this study (table 9). Coef-
ficients of determination (R2) for the statistically significant
results were all less than about 0.3, indicating that little of the
variance was explained, and relations were considered poor.
Statistically significant results of the WLS regression analyses
are presented in this section relative to phosphorus trends;
however, the reader is cautioned against over-interpretation of
the results.

Population throughout most of the study area either
remained the same or increased during the study period (fig.
20). Such increasing trends could explain increasing trends in
orthophosphorus and total phosphorus observed near urban
areas (point sources) or where drainages included a combina-
tion of urban and agricultural areas. However, results of the
WLS regression analyses indicated an inverse relation between
population and flow-adjusted trends in total phosphorus
(table 9), which was a result that was unexpected. Therefore,
trends in population were not considered a controlling factor
to explain trends in total phosphorus (nor could trends in
population be used to explain trends in phosphorus from point
sources).

Increasing trends in phosphorus from fertilizer were
observed in southeastern Colorado, eastern Oklahoma,
Arkansas, and southern Missouri (fig. 32). Results of the WLS
regression analyses did not indicate any statistically significant
results between trends in phosphorus from fertilizer and trends
in orthophosphorus or total phosphorus observed at study sites
(table 9). There were more increasing trends in phosphorus
from manure than were increasing trends in phosphorus from
fertilizer (figs. 32 and 33). Weighted-least-squares regression
results did suggest that increasing trends in phosphorus from
land application of manure could be related to increasing total
and flow-adjusted trends in both orthophosphorus and total
phosphorus at study sites (table 9).

There were only seven sites where management prac-
tices increased or decreased more than 1 percent of their total
drainage areas from 1992 to 1997 (table 10). Of these seven
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Figure 30. Trends in total phosphorus loads at study sites, 1993-2004.
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sites, only one corresponded to any trends in phosphorus data
for the study period. There was a decrease in both total and
flow-adjusted trends in total phosphorus for the study period
at site 89. During the period 1992-97, conservation practices
(contour farming or terracing) decreased by 1.3 percent of the
total drainage area for site 89. It is unlikely that the decrease
in total phosphorus was related to the decrease in the amount
of land in contour farming or terracing; rather, the decrease
in total phosphorus at site 89 was affected more by changes
in the wastewater treatment plant located near this site (Texas
Natural Resource Conservation Commission, 2000).

Overall conclusions about phosphorus trends
and loads for the study area

Similar to results for nitrogen, there were few trends
observed in the phosphorus data at study sites during the study
period; no trends were observed in about 57 percent of all
phosphorus trend analyses attempted. Although some patterns
in the phosphorus data did exist where trend analyses were
attempted, no regional patterns could be confirmed because of
poor spatial representation of the trends sites.

Flow-adjusted concentrations of orthophosphorus
decreased at 10 sites and increased at 7 sites. Flow-adjusted
concentrations of total phosphorus decreased at 6 sites and
increased at 17 sites. It was understandable that trend patterns
in total phosphorus did not follow trend patterns in orthophos-
phorus given that orthophosphorus loads accounted for only
about 20-30 percent of the total phosphorus load at compa-
rable sites. Trends in population data were inversely related to
trends in flow-adjusted total phosphorus; therefore, trends in
population were not considered a controlling factor to explain
trends in total phosphorus. No relation was observed between
phosphorus from fertilizer use and either orthophosphorus or
total phosphorus trends. However, statistical results did sug-
gest that increasing trends in both orthophosphorus and total
phosphorus could be related to increasing trends in phosphorus
from land application of manure.

There were more decreasing trends than increasing trends
in phosphorus loads during the past decade, most of which
were unique to the recent decade and not part of long-term
decreases since 1980. Similar to nitrogen loads, the Missis-
sippi and Atchafalaya Rivers contributed the highest phos-
phorus loads to the northwestern Gulf of Mexico as expected;
however, phosphorus yields from smaller rivers were similar
to or higher than yields from the Mississippi River.

Suspended Sediment

Specific details about suspended-sediment trend, load,
and yield results are discussed at the beginning of this section.
These results are then related to potential trends in source and
landscape attributes. Finally, some general conclusions about
suspended-sediment trend and load results are discussed at the
end of this section.
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Suspended-sediment trends, loads, and yields

Trend analyses in suspended-sediment data were
attempted for 39 study sites in three of the four river sys-
tems, with the exception of the Louisiana-Gulf/Pontchar-
train system, which had no sites with an adequate amount
of suspended-sediment data to attempt trend analyses (table
15). Trend results were rejected for 11 sites because of poor
model fit (represented as N/A in table 15). Of the remain-
ing 28 sites where trend results were considered acceptable,
there were 19 sites (about 68 percent) where no total trends
in concentration were observed during the study period (table
15). Decreasing total trends in concentration were observed
at eight sites ranging from -7.6 to -3.0 percent per year during
the study period (table 15, fig. 34). Increasing total trends in
concentration occurred at only site 9, which had a 9.5 per-
cent per year increase during the study period (table 15, fig.
34). There were 21 sites (75 percent) where no flow-adjusted
trends in concentration were observed during the study period
(table 15). Decreasing flow-adjusted trends in concentration
were observed at five sites, ranging from -7.6 to -2.2 percent
per year (table 15, fig. 35). Increasing flow-adjusted trends in
concentration occurred at two sites, sites 1 and 9, which had
increases of 5.7 and a 10 percent per year, respectively, during
the study period (table 15, fig. 35).

Decreasing total trends in suspended-sediment concentra-
tion were observed at sites 2, 5, 10, 46, 48, and 53 in the Mis-
sissippi system, and sites 61 and 68 in the Atchafalaya system.
Decreasing trends were not retained at sites 2, 46, 61, and
68 when the effects of streamflow were removed, indicating
that trends at these four sites were likely related to decreasing
trends in streamflow. Decreasing trends were not retained at
site 10 either, but there was no trend in streamflow at this site;
therefore, the decreasing total trend in suspended sediment at
site 10 cannot be explained at this time because of multiple
factors that may be occurring.

Decreasing trends were retained at sites 5, 48, and 53
when the effects of streamflow were removed, indicating
possible improvements in management practices or decreases
in sediment sources during the study period at these three
sites. The decrease in suspended sediment at site 5 cannot be
explained at this time. Sites 48 and 53 are mainstem sites on
the Mississippi and Arkansas Rivers. An explanation as to the
decreases in suspended sediment at these two sites is beyond
the scope of this report because of the size and complexity of
their associated drainage areas; however, these sites are highly
regulated throughout their drainage areas for navigation,
hydroelectric power, and other erosion-control or flood-control
purposes — the majority of which were built after the 1930s.
Meade (1995) reported that reservoirs built during the 1950s
on the Missouri and Arkansas Rivers, which were the largest
sources of sediment to the Mississippi River Basin at the time,
caused large decreases in suspended sediment because of their
trapping and settling effects. Decreasing trends in sediment
continued to be observed through the early 1990s (Meade,
1995).
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Figure 34. Total trends in suspended-sediment concentrations at study sites, 1993-2004.
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Figure 35. Flow-adjusted trends in suspended-sediment concentrations at study sites, 1993-2004.
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Decreasing total trends in suspended sediment were
not observed at sites 50 and 112; however, decreasing flow-
adjusted trends were observed at these two sites, indicating
possible decreases in sediment sources within the drainage
areas of these sites during the study period. Site 50 is located
on the Bogue Phalia in the Yazoo River Basin in Mississippi.
Land use within the drainage area of site 50 primarily is row
crop production (cotton, soybean, and corn). Recent trends
in tillage practices have indicated an increase in no-till or
reduced tillage practices within Midsouth States since 1998
(Delta Farm Press, 2003). Although the decreasing flow-
adjusted trends in suspended sediment at site 50 cannot be
explained at this time, the decreasing trend could be influ-
enced by recent shifts in row-crop agricultural practices from
conventional tillage to no-till or reduced tillage.

Site 112 is located on the San Antonio River where
multiple restoration and channel improvement projects have
been completed since the mid- to late-1990s (for example, as
documented in U.S. Army Corps of Engineers, 2004). These
projects include flood control, ecological restorations, and
recreational improvements. Decreases in suspended sediment
at site 112 could, therefore, be a result of these restoration and
improvement projects.

Increasing total and flow-adjusted trends in suspended-
sediment concentration occurred at site 9 in the Mississippi
system. Again, there were no recent references in literature
explaining the increase at site 9. Davis and Bell (1998) state
that a large percentage of the drainage area for site 9 is agri-
cultural land use. The median suspended-sediment con-
centration listed in their report for site 9 was about 20 mg/L,
which was similar in magnitude to the reference concentration
listed in this study (about 12 mg/L, table 15).

Although increasing total trends in suspended sediment
were not observed at site 1, increasing flow-adjusted trends
were observed. Because of the size and complexity of the
drainage area for site 1, an explanation as to the increase in
flow-adjusted suspended sediment is beyond the scope of this
report.

There were no trends observed in suspended-sediment
loads at 20 sites (about 71 percent) during the study period
(table 15). There were decreasing trends in suspended-sedi-
ment loads observed at eight sites for the study period, ranging
from -8.8 to -4.4 percent per year (table 15, fig. 36). There
were no increasing trends in suspended-sediment loads at
study sites during the study period (table 15, fig. 36).

No trends in suspended-sediment loads were observed at
site 1 for the study period (table 15) or for the period 1980-
2004 (fig. 37). The decreasing trends in suspended-sediment
loads at sites 2 and 48 in the Mississippi system and at site 61
in the Atchafalaya system appear to be part of recent trends
during the last decade that began in the mid-1990s (fig. 37).
The decreasing trends in suspended-sediment loads at site 53
in the Mississippi system and at site 68 in the Atchafalaya
system are part of a much longer decreasing trend in loads that
has been occurring since 1980 (fig. 37).

Annual loads, average annual load, and yield calculations
for suspended sediment were attempted for 24 study sites in
two of the four river systems, the Mississippi and the Atchafa-
laya systems (table 16). Load calculations were not attempted
for sites in the Louisiana-Gulf/Pontchartrain or the Texas-Gulf
systems because there was an inadequate amount of data to
attempt calculations, or poor model fit associated with the
results. Suspended-sediment loads and yields for selected
sites on the Mississippi, Arkansas, and Atchafalaya Rivers
from this study for the period 1993-2004 were compared to
loads and yields calculated by Kelly and others (2001) for the
period 1996-2000 [suspended-sediment loads and yields from
Kelly and others (2001) were used here as a basis for com-
parison because Goolsby and others (1999) did not include
sediment data]. The mean annual suspended-sediment loads
from sites 1, 2, 48, 53, and 68 from Kelly and others (2001)
were 28,200,000; 89,400,000; 4,470,000; 94,400,000; and
41,400,000 T, respectively. Suspended-sediment loads for
the same sites calculated from this study were 29,200,000;
110,000,000; 5,890,000; 100,000,000; and 48,500,000 T
(table 16), respectively, indicating higher loads of suspended
sediment for this study, which had a study period that was
longer, more recent, and included the previous study period.
Suspended-sediment yields calculated from Kelly and others
(2001) were 53.5,48.4, 10.9, 32.4, and 171 T-km-2-yr-1 for
sites 1, 2, 48, 53, and 68. For this study, suspended-sediment
yields for the same sites were 55.6, 59.8, 14.4, 34.3, and 201
T-km-2-yr-1 indicating higher yields calculated for this study
than those calculated in the previous study (table 4).

Relation of trends in suspended-sediment to
trends in source data and landscape attributes

Population throughout most of the study area either
remained the same or increased during the study period (fig.
20). Such increasing trends would imply increasing trends
in suspended-sediment data as forested areas are converted
to urban areas to accommodate suburban expansion; how-
ever, results of the WLS regression indicated no statistically
significant relation between trends in suspended-sediment data
and regional patterns in population at the study sites (table 9).
Results of the WLS regression likely are influenced more by
the lack of sites analyzed for suspended-sediment trends than
any other factor, as most of the trends in suspended sediment
were observed at large sites that could mask any trends in
population or other landscape changes.

There were no sites in which trends in conservation-prac-
tices data could be compared to trends in suspended sedi-
ment (table 10). Specifically, the lack of conservation tillage
information for 1997 was especially critical because increases
in acreages of conservation tillage in agricultural areas could
cause decreasing trends in suspended sediment at those loca-
tions as is implied by the decreasing flow-adjusted trend at site
50, previously mentioned.
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Figure 36. Trends in suspended-sediment loads at study sites, 1993-2004.
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Figure 37. Annual suspended-sediment loads for selected study sites, 1980-2004.

Overall conclusions about suspended-sediment
trends and loads for the study area

Trend analyses of suspended-sediment data were
attempted at 39 sites. No trends were observed at about 71
percent of the sites. Remaining results indicated primarily
decreasing trends in suspended sediment data. Most of the
decreasing trends occurred on mainstem sites for the Missis-
sippi, Arkansas, Red, and Atchafalaya Rivers, which are all
regulated with reservoirs, locks and dams, and other erosion
or flood-control structures that trap and prevent sediment from
being transported downstream. Large decreases in suspended
sediment in the Mississippi River basin began in the 1950s

when large reservoirs were constructed in the Missouri and
Arkansas Rivers, which were considered the largest sources of
sediment at the time. Because the Mississippi River and its
major tributaries have continued to be modified and improved
since 1990, it is suggested that declines in suspended sediment
observed along the mainstem sites during the study period are
related to ongoing watershed and channel modifications.

It is important to note that, for this report, only sus-
pended-sediment data were used in the analyses, and that few
trend analyses were attempted because of lack of available
data. Many agencies do not presently collect nor have histori-
cally collected suspended-sediment samples, but analyze water
samples for total suspended solids (TSS). As pointed out by



Gray and others (2000), suspended sediment and TSS data

are not comparable and should not be used interchangeably.
Thus, additional sites where only TSS data were available
were not included in this study. Sediment is considered one

of the top three pollutants in streams and rivers in the United
States (U.S. Environmental Protection Agency, 2006). Adop-
tion of suspended sediment or TSS as the “analysis-of-choice”
by agencies collecting sediment-related data would provide a
consistent dataset to assess issues such as continued degrada-
tion or improvements due to restoration activities.

SUMMARY

The USGS-NAWQA Program is conducting regional
assessments in eight major river basins focusing on chemicals
in water, such as trends in nutrients, sediment, and pesticides,
and other relevant water-quality issues, such as trends in
biological-response data (chlorophyll, algae). This regional
assessment explores trends in nutrient and suspended-sediment
concentrations and loads for rivers in the south-central United
States, which is the Lower Mississippi, Arkansas-White-Red,
and Texas-Gulf Basin.

The primary source of water-chemistry and flow data for
this study was data collected by the USGS. Since the early
1970s, the USGS has collected water-quality information from
major river basins throughout the United States as part of three
national programs. In addition, other long-term water-qual-
ity monitoring stations operate as part of USGS cooperative
projects in the various States. Other sources of water-chem-
istry data were data collected by State agencies within the
study area as part of ambient data-collection programs. The
final source of water-quality data considered for analysis was
from the U.S. Environmental Protection Agency Legacy Data
Center and the Storage and Retrieval database.

To explain trends in surface water-quality data, it was
important to identify and understand temporal and spatial
patterns in source data and landscape attributes. The nutrient
source and landscape data included in this study were annual
fertilizer-use data for nitrogen and phosphorus, 5-year com-
pilations of manure-generation data for nitrogen and phos-
phorus, annual data for atmospheric deposition of nitrogen,
population density data from the 1990 and 2000 census, and
management practice information (including irrigation type
and conservation practices for 1992 and 1997).

Based on specific selection criteria, 115 sites were
selected for trend analysis for water years 1993-2004 (water
year begins October 1 and ends September 30). There were
sites that were included in this study that had sampling periods
that started after October 1, 1992, or ended prior to September
20, 2004. These sites were included in this study because of
their importance relative to location or land-use type. Because
site-selection criteria were primarily based on data availability,
spatial representation of the selected sites was considered fair
to poor in that there were areas that were under-represented
such as in southern Kansas, most of Oklahoma, and parts of
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Texas and Louisiana. The selected sites were then grouped
according to the four primary river systems in this study: Mis-
sissippi, Atchafalaya, Louisiana-Gulf/Pontchartrain, and the
Texas-Gulf systems. These groupings were used as a basis for
comparing trend, load, and yield results for major drainages
entering the northwestern Gulf of Mexico.

Most rivers that empty into the Gulf of Mexico had
sites that were included in this study with the exceptions of
the Guadalupe River in Texas and the Calcasieu River in
Louisiana. Two sites, one on the upper Mississippi River that
included the Missouri River and another on the Ohio River,
were outside of the study area but were included for analysis
in order to document nutrient and sediment loadings entering
the study area. Sites with small drainage areas were not dis-
carded, although their overall contribution of nutrient and sedi-
ment loads was potentially insignificant within the drainage
area of a large river basin. These sites were important because
they provided valuable information related to specific land-use
types. Also, sites with smaller drainage areas would provide
the opportunity to document potentially dramatic changes in
water quality over the past decade due to management changes
or restoration activities.

For this study, both the total trend (not adjusted for flow)
and a flow-adjusted trend were estimated to understand the
overall picture of what was happening in relation to nutrient
and sediment concentrations within the study area. Total trends
could be used to determine impacts to aquatic communities.
Flow-adjusted trends were estimated by removing the effects
of streamflow on the trends in order to determine if changes in
water quality were caused by something other than flow, such
as landscape changes or changes in source. Other trend analy-
ses completed were trends in load, which provided a direct
measure of the effect of nutrients and sediment discharging to
the northwestern Gulf of Mexico, and trends in flow, which
improved interpretation of water-quality trends by understand-
ing how flow has changed over time. Reference concentrations
and loads were also computed for each statistically significant
trend (reference concentrations and loads are best explained as
the “starting point” of a trend line drawn through the data with
a slope equal to the trend estimate).

The majority of study sites either had no trends (about 64
percent of all trend analyses attempted) or decreasing trends
in streamflow during the study period. The regional pattern
of decreasing trends in streamflow during the study period
appeared to correspond to moist conditions at the beginning
of the study period and the influence of three drought peri-
ods during the study period, with the most extreme in 2000.
Decreasing trends in streamflow at mainstem sites on the
Mississippi River, Arkansas, Red, and Atchafalaya Rivers
were specific to the study period and were not part of long-
term trends. Increasing trends in streamflow at sites on the San
Antonio River in the Texas-Gulf system were observed and
likely were caused by moist conditions returning to south-
ern Texas after the drought of 2000, coupled with increased
urbanization and impervious surfaces during the study period.
The increase in streamflow for the San Antonio River during
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the study period appears to part of a recent decadal trend that
started about 1997.

In general, there were few trends observed in the nitro-
gen data at study sites during the study period; no trends were
observed in about 63 percent of all nitrogen trend analyses
attempted. Although some patterns in the nitrogen data did
exist where trends were attempted, no regional patterns could
be confirmed because of poor spatial representation of the
trends sites.

Decreasing trends in flow-adjusted concentrations of
ammonia were observed at 25 sites. No increasing trends in
concentrations of ammonia were noted at any sites. Flow-
adjusted concentrations of nitrite plus nitrate decreased at 7
sites and increased at 14 sites. Flow-adjusted concentra-
tions of total nitrogen decreased at 2 sites and increased at
12 sites. Improvements to municipal wastewater treatment
facilities contributed to the decline of ammonia concentra-
tions at selected sites. Notable increasing trends in nitrite
plus nitrate and total nitrogen at selected study sites were
attributed to both point and nonpoint sources. Trend patterns
in total nitrogen generally followed trend patterns in nitrite
plus nitrate, which was understandable given that nitrite plus
nitrate loads generally were 70-90 percent of the total nitrogen
loads at most sites. Although population increased throughout
the study area during the study period, there was no observed
relation between increasing trends in nitrogen in study area
streams and increasing trends in population. With respect
to other nitrogen sources, statistical results did suggest that
increasing trends in nitrogen could be related to increasing
trends in nitrogen from either commercial fertilizer use or land
application of manure.

Loads of ammonia, nitrite plus nitrate, and total nitrogen
decreased during the study period, but some trends in nitro-
gen loads were part of long-term decreases since 1980. For
example, ammonia loads were shown to decrease at nearly all
sites over the past decade, but at selected sites, these decreas-
ing trends were part of much longer trends since 1980. The
Mississippi and Atchafalaya Rivers contributed the high-
est nitrogen loads to the northwestern Gulf of Mexico as
expected; however, nitrogen yields from smaller rivers had
similar or higher yields than from the Mississippi River.

Similar to results for nitrogen, there were few trends
observed in the phosphorus data at study sites during the study
period; no trends were observed in about 57 percent of all
phosphorus trend analyses attempted. Although some patterns
in the phosphorus data did exist where trend analyses were
attempted, no regional patterns could be confirmed because of
poor spatial representation of the trends sites.

Flow-adjusted concentrations of orthophosphorus
decreased at 10 sites and increased at 7 sites. Flow-adjusted
concentrations of total phosphorus decreased at 6 sites and
increased at 17 sites. It was understandable that trend patterns
in total phosphorus did not follow trend patterns in orthophos-
phorus given that orthophosphorus loads accounted for only
about 20-30 percent of the total phosphorus load at compa-
rable sites. Trends in population data were inversely related to

trends in flow-adjusted total phosphorus; therefore, trends in
population were not considered a controlling factor to explain
trends in total phosphorus. No relation was observed between
phosphorus from fertilizer use and either orthophosphorus or
total phosphorus trends. However, statistical results did sug-
gest that increasing trends in both orthophosphorus and total
phosphorus could be related to increasing trends in phosphorus
from land application of manure.

There were more decreasing trends than increasing trends
in phosphorus loads during the past decade, most of which
were unique to the recent decade and not part of long-term
decreases since 1980. Similar to nitrogen loads, the Missis-
sippi and Atchafalaya Rivers contributed the highest phos-
phorus loads to the northwestern Gulf of Mexico as expected;
however, phosphorus yields from smaller rivers were similar
to or higher than yields from the Mississippi River.

Trend analyses of suspended-sediment data were
attempted for 39 sites. No trends were observed at about 71
percent of the sites. Remaining results indicated primarily
decreasing trends in suspended sediment data. Most of the
decreasing trends occurred on mainstem sites for the Missis-
sippi, Arkansas, Red, and Atchafalaya Rivers, which are all
regulated with reservoirs, locks and dams, and other erosion
or flood-control structures that trap and prevent sediment from
being transported downstream. Large decreases in suspended
sediment in the Mississippi River basin began in the 1950s
when large reservoirs were constructed in the Missouri and
Arkansas Rivers, which were considered the largest sources of
sediment at the time. Because the Mississippi River and its
major tributaries have continued to be modified and improved
since 1990, it is suggested that declines in suspended sediment
observed along the mainstem sites during the study period are
related to ongoing watershed and channel modifications.
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Appendix. Methodology for estimation of total trend and flow-adjusted trends in
concentration, trends in streamflow, and trends in load

Based on written communication from Greg Schwarz, U.S. Geological Survey, July 24, 2006

Total trend in concentration and trends in streamflow.
The proposed estimates for total trend in concentration were
derived from parameter estimates, and associated co-variances,
obtained from a linear model of streamflow and an optimal
model of water-quality concentration with both models being
estimated in natural logarithm space.

The model of streamflow consisted of an intercept, a
linear trend term (decimal time), sine and cosine functions
of decimal time (the seasonal component of streamflow),
and a serially correlated error term; the streamflow residual
was assumed to follow an autoregressive process of order
20 [AR(20)]. The streamflow model was estimated by using
maximum likelihood methods as employed by the AUTOREG
procedure in SAS 9, version 1, release 2 (SAS institute Inc.,
2004). For some sites, serial correlation in the residuals was
not fully removed by the AR(20) model. Significant residual
serial correlation could invalidate the standard error of the
streamflow trend coefficient, although the practical importance
of this effect for the statistical significance of the total trend
was likely to be small.

The water-quality model related the logarithm of nutrient
or suspended sediment concentrations to various functions of
streamflow, decimal time, and season as previously described.
An abstract representation of the model is given by

¢, =b,+m(g)b,+WT)b,+xb +e, (N

where

c, is the natural logarithm of contaminant concentration in
period £;

g, is natural logarithm of streamflow;

T, is decimal time;

x,is a vector of ancillary predictors such as the sine and cosine
functions of decimal time;

e is an independent and identically normally distributed ran-
dom error;

m(") and h() are multi-element vector functions of ¢ and 7 and

bo,bq, b,, and bX are associated coefficients to be estimated.

The multi-element vector function of the logarithm of
streamflow, m('), consisted of the logarithm of streamflow and
the square of the logarithm of streamflow; h(’) the multi-ele-
ment vector function of decimal time consisted of second-
order polynomial terms.

The water-quality model was estimated by using either
ordinary least squares if the water-quality data contained no
censored observations or the maximum likelihood method if
censored observations were present. The maximum likelihood

bias adjustment required estimates of the detection level even
for uncensored observations; the detection level was set equal
to the maximum of the median detection level for all censored
observations across all stations or the reported uncensored
value.

The estimate of total trend in concentration was based on
the streamflow and time-trend coefficients from the water-
quality model (bq and b, ), and the coefficient on decimal time
in the streamflow model, subsequently denoted as a. The trend
in the logarithm of streamflow during period ¢ (between ¢, the
beginning of the streamflow analysis period in 1993, and ¢,,
the end of the streamflow analysis period in 2004), g,, was
defined as:

7,=q+a(l,-T), @)

where ¢ and T were the means of the logarithm of
streamflow and decimal time over the analysis period. If
streamflow was upward trending, then a was positive and
trend in the logarithm of streamflow was below the mean
value of the logarithm of streamflow for the first half of the
analysis period and above the mean value thereafter. Note
that the average of the logarithm of streamflow, ¢, implicitly
accounted for the intercept and average of the seasonal terms
that are included in the streamflow model but not otherwise
apparent in the formulation of equation (2).

Total trend in water-quality concentrations in period ¢,
(between ¢, the beginning of the streamflow analysis period
in 1993, and t,, the end of the streamflow analysis period in
2004), ¢,, was defined as:

¢,=m(@)b,+ h(T,)b,. 3)

Only terms involving trend were included in equation (3).
Note that in forming this estimate, the trend in the logarithm
of streamflow was substituted for the actual logarithm of flow
in the function m(?). This substitution implies that variations
in streamflow not reflected in the trend did not determine the
proposed measure of total trend in water quality. Because of
the nonlinearity of the function m('), this might have led to a
bias in the evaluation of full water-quality trend if flows were
becoming more or less variable over time. The streamflow
and concentration trends may have been calculated for slightly
different periods because these analyses were completed as
part of a larger national analysis that required flexibility in
the streamflow period. The difference in the final total trend
results from different streamflow periods and the streamflow
period 1993 to 2004 likely is small.



The total trend in water-quality concentration over the
analysis period, 7., is given by

. =¢,-¢,=(m(@,) - m(q, Db, + (W(T,) - (T, ))b,
= (m@+a(T,)) - m@+a(T, )b, + (W(T,) - (T,)b,. 4

The total trend in water-quality concentration depends on
the trend and streamflow coefficients from the water-quality
model, bq and bT, as well as the trend coefficient a from the
streamflow model.

The total trend, expressed as the average percent change
per year, is given by

(exp(z)-1)

Percent Trend/year = 100 T-T, 5)

where 7 is 7, .

The estimate of total trend was obtained by substitut-
ing sample estimates for the population values of a, bq and b,
in equation (4). The standard error of the resulting estimate
was complicated to derive owing to the nonlinear manner in
which the streamflow trend coefficient and the water-quality
and streamflow coefficients interact in the determination of
total trend. An approximation to the standard error suitable
for large samples was obtained by taking a first-order Tay-
lor approximation of the total trend estimate from equation
(4) with respect to the streamflow and water-quality model
coefficients. The vector of combined streamflow and trend
coefficients from the water-quality model was represented
by b={b/ b/} ,andV,represented the covariance matrix
of this vector. Under the plausible assumption that streamflow
was exogenous with respect to water quality, meaning that
changes in streamflow caused changes in water quality but
changes in water quality did not cause changes in streamflow,
the covariance between the estimated values of a and b was
zero. Consequently, the standard error of 7., denoted ¢, , was
defined as:

2
IAm ,
c.=.|V, (—aa bqj +AV, A (6)

where
v, is the variance of the estimated flow trend coefficient, a;

oAm _ om(@+a(l,-T)) omg+a(l,-T))
aa aa aa ’

A={m(g+a(T,-T)) T} - {m(7 +a(T,-T)) I(T,)}. (8

In large samples, the t-statistics z,/g, was distributed
standard normal; therefore, the two-sided p-value for signifi-
cance of trend is given by

(N

p=2(1-® (jol)) ©)
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where
/o was 7,/0,, and
®(") is the standard normal cumulative distribution.

Trend results were considered statistically significant if
the p-value was less than or equal to 0.05.

Trends in flow-adjusted concentration. The estimation
of flow-adjusted trend in concentration is similar to total trend,
the only difference being that the streamflow component of
the water-quality model in equation (2) is not included in the
determination of the smoothed water-quality trend; otherwise,
the estimation methods are the same.

Trends in load. The trend in load, 7,, is defined simi-
larly to total trend in concentration as seen in equation (4) but
includes an additional term to reflect the direct effect stream-
flow has on the determination of load as follows:

n=a(T-T)+(m(7+a(T))
-m(@ +a(T, )b, + ((T) - W(T,))b; . (10)

The full trend in load, expressed in percent per year, is
given by equation (5) where 7 is 7.

The standard error of 7,, denoted by o, , was defined as:

IdAm

2
o, = V(,(Wb,ﬁ(ﬂ; T, )J +AV, A", (11)

where V, is the variance of the estimated flow trend coef-
ficient, a, from equation (7), and A is estimated from equation

(8).

The two-sided p-value for significance of trend in load is
defined from equation (9) where /o is 7,/0, , and ®(-) is the
standard normal cumulative distribution.
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TABLES

Table 2. Analytical results for trends in daily streamflow for sites in the Lower-Mississippi-Texas Basin for water years 1993-2004

Map

n(;lilgb:)r Station number  Trend in daily flow begin date Trend in daily flow end date p::z::tI:;Iroyv:;\r Trend in flow, p-value
Mississippi system
1 03612500 10/1/1992 9/30/2004 no trend 0.80
2 07022000 10/1/1992 9/30/2004 -4.3 0.000
3 07031740 2/1/1995 9/30/2004 no trend 0.57
4 07047810 10/1/1992 9/30/2004 no trend 0.18
5 07047942 10/1/1992 9/30/2004 no trend 0.41
6 07050500 10/1/1992 9/30/2004 -5.2 0.002
9 07053250 4/15/1993 9/30/2004 -4.8 0.000
10 07055646 4/17/1993 9/26/2004 no trend 0.44
11 07056000 10/1/1992 9/30/2004 -4.0 0.043
12 07060500 10/1/1992 9/30/2004 -5.2 0.001
13 07060710 10/1/1992 9/30/2004 -4.7 0.001
14 07061600 10/1/1992 9/30/2004 -35 0.003
15 07066110 10/1/1992 9/30/2004 -3.8 0.003
16 07068000 10/1/1992 9/30/2004 -3.6 0.000
17 07071500 10/1/1992 9/30/2004 -4.5 0.004
18 07077500 10/1/1996 9/30/2004 no trend 0.31
20 07093740 10/1/1992 9/30/2003 -7.0 0.000
21 07103700 10/1/1992 9/30/2004 no trend 0.21
22 07103780 10/1/1992 9/30/2004 no trend 0.38
24 07105500 10/1/1992 9/30/2004 no trend 0.32
25 07105530 10/1/1992 9/30/2004 no trend 0.47
26 07106300 10/1/1992 9/30/2004 no trend 0.87
27 07106500 10/1/1992 9/30/2004 no trend 0.74
28 07189000 10/1/1992 9/30/2004 -5.0 0.001
29 07195000 7/13/1995 9/30/2004 no trend 0.82
30 07195500 10/1/1992 9/30/2004 -3.9 0.004
31 07195865 9/12/1996 9/30/2004 no trend 0.83
32 07196000 10/1/1992 9/30/2004 -3.5 0.049
33 07196500 10/1/1992 9/30/2004 -3.8 0.010
34 07196900 10/1/1992 9/30/2004 -4.5 0.046
35 07197000 10/1/1992 9/30/2004 -4.5 0.006
36 07227500 10/1/1992 9/30/2004 -6.6 0.020
37 07228000 10/1/1992 9/30/2004 no trend 0.30
38 07239450 10/1/1992 9/30/2004 no trend 0.19

39 07241000 10/1/1992 9/30/2004 723 0.014
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Table 2. Analytical results for trends in daily streamflow for sites in the Lower-Mississippi-Texas Basin for water years 1993-2004--
Continued

Map

ll(;lil;lbse)r Station number  Trend in daily flow begin date Trend in daily flow end date p:::::;:::oy‘:’;r Trend in flow, p-value
40 07241520 10/1/1992 9/30/2004 -6.0 0.011
41 07241550 10/1/1992 9/30/2004 -4.8 0.008
42 07247015 10/1/1992 9/30/2004 no trend 0.088
43 07247250 10/1/1992 9/30/2004 no trend 0.12
44 07247345 10/1/1992 9/30/2004 no trend 0.12
45 07247650 10/1/1992 9/30/2004 -5.6 0.023
46 07249400 10/1/1992 9/30/2004 -5.8 0.001
47 07263295 11/11/1992 9/29/2004 -4.8 0.030
48 07263620 10/1/1992 9/30/2004 -4.9 0.019
49 07268000 10/1/1992 9/30/2004 no trend 0.96
50 07288650 10/1/1995 9/30/2004 no trend 0.18
51 07288955 10/1/1995 9/30/2004 no trend 0.17
52 07290650 10/1/1992 9/30/2004 no trend 0.41
53 07373420 10/1/1992 9/30/2004 -2.2 0.039
Atchafalaya system
54 07299540 10/1/1992 9/30/2004 no trend 0.44
55 07300000 10/1/1992 9/30/2004 no trend 0.40
56 07308500 10/1/1992 9/30/2004 -7.3 0.000
57 07311700 10/1/1992 9/30/2004 -6.0 0.000
58 07311800 10/1/1992 9/30/2004 no trend 0.063
59 07331000 10/1/1992 9/30/2004 -6.6 0.000
60 07335500 10/1/1992 9/30/2004 -5.9 0.000
61 07337000 10/1/1992 9/30/2004 -5.8 0.000
62 07340300 10/1/1992 9/30/2004 -3.0 0.021
63 07343000 10/1/1992 9/19/2004 no trend 0.48
64 07355500 10/1/1992 9/30/2004 no trend 0.44
65 07362000 10/1/1992 9/30/2004 no trend 0.69
66 07362587 10/1/1992 9/13/2004 no trend 0.34
67 07373000 10/1/1992 9/30/2004 no trend 0.60
68 07381495 10/1/1992 9/30/2004 -2.2 0.030
69 07381600 10/1/1995 9/30/2004 no trend 0.74
Louisiana-Gulf/Pontchartrain system
70 07375500 10/1/1992 9/30/2004 no trend 0.19
71 07376000 10/1/1992 9/30/2004 no trend 0.066
73 07386980 10/1/1992 9/30/2004 no trend 0.46

74 08012150 10/1/1992 9/29/2004 no trend 0.26
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Table 2. Analytical results for trends in daily streamflow for sites in the Lower-Mississippi-Texas Basin for water years 1993-2004--
Continued

Ma .
n(;lilgbl;e)r Station number  Trend in daily flow begin date Trend in daily flow end date p::::tlgllroyv:;r Trend in flow, p-value
Texas-Gulf system
75 08030500 10/1/1992 9/30/2004 no trend 0.86
76 08032000 10/1/1992 9/30/2004 no trend 0.39
77 08033500 10/1/1992 9/30/2004 no trend 0.93
78 08041000 10/1/1992 9/30/2004 no trend 0.82
79 08044500 10/1/1992 9/30/2004 -5.2 0.004
80 08049500 10/1/1992 9/30/2004 no trend 0.20
81 08051500 10/1/1992 9/30/2004 no trend 0.070
82 08057410 10/1/1992 9/30/2004 no trend 0.25
83 08062500 10/1/1992 9/30/2004 no trend 0.16
84 08064100 10/1/1992 9/30/2004 no trend 0.81
85 08064700 10/1/1992 9/30/2004 no trend 0.69
86 08065000 10/1/1992 9/30/2004 no trend 0.28
87 08065350 10/1/1992 9/30/2004 no trend 0.15
88 08066500 10/1/1992 9/30/2004 no trend 0.63
89 08069000 10/1/1992 9/30/2004 no trend 0.10
90 08070200 10/1/1992 9/30/2004 no trend 0.76
91 08073500 10/1/1992 9/30/2004 no trend 0.63
92 08074500 10/1/1992 9/30/2004 no trend 0.12
93 08078000 10/1/1992 9/30/2004 no trend 0.72
94 08085500 10/1/1992 9/30/2004 -7.0 0.003
95 08114000 10/1/1992 9/30/2004 no trend 0.94
96 08117500 10/1/1992 9/30/2004 no trend 0.69
97 08123850 10/1/1992 9/30/2004 -6.9 0.004
98 08136500 10/1/1992 9/30/2004 -8.2 0.0
99 08143600 10/1/1992 9/30/2004 no trend 0.59
100 08147000 10/1/1992 9/30/2004 no trend 0.15
101 08154700 10/1/1992 9/30/2004 no trend 0.61
102 08155200 10/1/1992 9/30/2004 no trend 0.26
103 08155240 10/1/1992 9/30/2004 no trend 0.29
104 08155300 11/19/1992 8/5/2004 no trend 0.36
105 08156800 10/7/1992 9/18/2004 -5.7 0.008
106 08159000 10/1/1992 9/27/2004 no trend 0.35
107 08162000 10/1/1992 9/30/2004 no trend 0.62
108 08162500 10/1/1992 9/30/2004 no trend 0.83

109 08162600 10/1/1992 9/30/2004 no trend 0.77
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Table 2. Analytical results for trends in daily streamflow for sites in the Lower-Mississippi-Texas Basin for water years 1993-2004--
Continued

Ma .
Il(;l;;ll%)r Station number  Trend in daily flow begin date Trend in daily flow end date p:::::tI:;Iroyv:;r Trend in flow, p-value
110 08178565 10/1/1992 9/30/2004 no trend 0.37
111 08178800 10/1/1992 9/30/2004 no trend 0.63
112 08181800 10/1/1992 9/30/2004 7.89 0.037
113 08188500 10/1/1992 9/30/2004 10 0.026
114 08189500 10/1/1992 9/30/2004 no trend 0.25

115 08210000 10/1/1992 9/30/2004 no trend 0.11
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