
A - 1

Appendix A
Probable Maximum Precipitation (PMP) Maps

A - 2

General Storms

A - 3

A - 4

A - 5

A - 6

A - 7

A - 8

A - 9

A - 10

A - 11

A - 12

A - 13

A - 14

A - 15

A - 16

A - 17

A - 18

A - 19

A - 20

A - 21

A - 22

A - 23

A - 24

A - 25

A - 26

A - 27

A - 28

A - 29

A - 30

A - 31

A - 32

A - 33

Local Storms

A - 34

A - 35

A - 36

A - 37

A - 38

A - 39

A - 40

A - 41

A - 42

A - 43

A - 44

A - 45

A - 46

A - 47

A - 48

A - 49

Tropical Storms

A - 50

A - 51

A - 52

A - 53

A - 54

A - 55

A - 56

A - 57

A - 58

A - 59

A - 60

A - 61

A - 62

A - 63

A - 64

A - 65

A - 66

A - 67

A - 68

A - 69

A - 70

A - 71

A - 72

A - 73

A - 74

A - 75

A - 76

A - 77

A - 78

A - 79

 B-1

Appendix B
Geographic Transposition Factor (GTF) Maps

 B-2

General Storms

 B-3

 B-4

 B-5

 B-6

 B-7

 B-8

 B-9

 B-10

 B-11

 B-12

 B-13

 B-14

 B-15

 B-16

 B-17

 B-18

 B-19

 B-20

 B-21

 B-22

 B-23

 B-24

 B-25

Local Storms

 B-26

 B-27

 B-28

 B-29

 B-30

 B-31

 B-32

 B-33

 B-34

 B-35

 B-36

 B-37

 B-38

 B-39

 B-40

 B-41

 B-42

 B-43

 B-44

 B-45

 B-46

 B-47

 B-48

 B-49

 B-50

 B-51

 B-52

 B-53

 B-54

 B-55

 B-56

Tropical Storms

 B-57

 B-58

 B-59

 B-60

 B-61

 B-62

 B-63

 B-64

 B-65

 B-66

 B-67

 B-68

 B-69

 B-70

 B-71

 B-72

 B-73

 C-1

Appendix C
100-year Return Frequency Maximum Average Dew Point

Temperature Climatology Maps

 C-2

6-hour 1000mb Dew Point Maps

 C-3

 C-4

 C-5

 C-6

 C-7

 C-8

 C-9

 C-10

 C-11

 C-12

 C-13

 C-14

 C-15

12-hour 1000mb Dew Point Maps

 C-16

 C-17

 C-18

 C-19

 C-20

 C-21

 C-22

 C-23

 C-24

 C-25

 C-26

 C-27

 C-28

24-hour 1000mb Dew Point Maps

 C-29

 C-30

 C-31

 C-32

 C-33

 C-34

 C-35

 C-36

 C-37

 C-38

 C-39

 C-40

D - 1

Appendix D
Sea Surface Temperature (SST) Climatology Maps

D - 2

2-Sigma Sea Surface Temperature Maps

D - 3

D - 4

D - 5

D - 6

D - 7

D - 8

D - 9

D - 10

D - 11

D - 12

D - 13

D - 14

E - 1

Appendix E
Storm Precipitation Analysis System (SPAS)

Description

E - 2

Introduction

The Storm Precipitation Analysis System (SPAS) is grounded on years of scientific research
with a demonstrated reliability in hundreds of post-storm precipitation analyses. It has evolved
into a trusted hydrometeorological tool that provides accurate precipitation data at a high spatial
and temporal resolution for use in a variety of sensitive hydrologic applications (Faulkner et al.,
2004, Tomlinson et al., 2003-2012). Applied Weather Associates, LLC and METSTAT, Inc.
initially developed SPAS in 2002 for use in producing Depth-Area-Duration values for Probable
Maximum Precipitation (PMP) analyses. SPAS utilizes precipitation gauge data, basemaps and
radar data (when available) to produce gridded precipitation at time intervals as short as 5
minutes, at spatial scales as fine as 1 km2 and in a variety of customizable formats. To date
(March 2015 SPAS has been used to analyze over 500 storm centers across all types of terrain,
among highly varied meteorological settings and some occurring over 100-years ago.

SPAS output has many applications including, but not limited to: hydrologic model
calibration/validation, flood event reconstruction, storm water runoff analysis, forensic cases and
PMP studies. Detailed SPAS-computed precipitation data allow hydrologists to accurately
model runoff from basins, particularly when the precipitation is unevenly distributed over the
drainage basin or when rain gauge data are limited or not available. The increased spatial and
temporal accuracy of precipitation estimates has eliminated the need for commonly made
assumptions about precipitation characteristics (such as uniform precipitation over a watershed),
thereby greatly improving the precision and reliability of hydrologic analyses.

To instill consistency in SPAS analyses, many of the core methods have remained consistent
from the beginning. However, SPAS is constantly evolving and improving through new
scientific advancements and as new data and improvements are incorporated. This write-up
describes the current inner-workings of SPAS, but the reader should realize SPAS can be
customized on a case-by-case basis to account for special circumstances; these adaptations are
documented and included in the deliverables. The over-arching goal of SPAS is to combine the
strengths of rain gauge data and radar data (when available) to provide sound, reliable and
accurate spatial precipitation data.

Hourly precipitation observations are generally limited to a small number of locations, with
many basins lacking observational precipitation data entirely. However, Next Generation Radar
(NEXRAD) data provide valuable spatial and temporal information over data-sparse basins,
which have historically lacked reliability for determining precipitation rates and reliable
quantitative precipitation estimates (QPE). The improved reliability in SPAS is made possible
by hourly calibration of the NEXRAD radar-precipitation relationship, combined with local
hourly bias adjustments to force consistency between the final result and “ground truth”
precipitation measurements. If NEXRAD radar data are available (generally for storm events
since the mid-1990s), precipitation accumulation at temporal scales as frequent as 5-minutes can
be analyzed. If no NEXRAD data are available, then precipitation data are analyzed in hourly
increments. A summary of the general SPAS processes is shown in flow chart in Figure E.1.

E - 3

Figure E.1: SPAS flow chart

Setup
Prior to a SPAS analysis, careful definition of the storm analysis domain and time frame to be
analyzed is established. Several considerations are made to ensure the domain (longitude-
latitude box) and time frame are sufficient for the given application.

SPAS Analysis Domain
For PMP applications it is important to establish an analysis domain that completely
encompasses a storm center, meanwhile hydrologic modeling applications are more concerned
about a specific basin, watershed or catchment. If radar data are available, then it is also
important to establish an area large enough to encompass enough stations (minimum of ~30) to
adequately derive reliable radar-precipitation intensity relationships (discussed later). The
domain is defined by evaluating existing documentation on the storm as well as plotting and
evaluating initial precipitation gauge data on a map. The analysis domain is defined to include
as many hourly recording gauges as possible given their importance in timing. The domain must
include enough of a buffer to accurately model the nested domain of interest. The domain is
defined as a longitude-latitude (upper left and lower right corner) rectangular region.

SPAS Analysis Time Frame
Ideally, the analysis time frame, also referred to as the Storm Precipitation Period (SPP), will
extend from a dry period through the target wet period then back into another dry period. This is
to ensure that total storm precipitation amounts can be confidently associated with the storm in
question and not contaminated by adjacent wet periods. If this is not possible, a reasonable time

E - 4

period is selected that is bounded by relatively lighter precipitation. The time frame of the
hourly data must be sufficient to capture the full range of daily gauge observational periods for
the daily observations to be disaggregated into estimated incremental hourly values (discussed
later). For example, if a daily gauge takes observations at 8:00 AM, then the hourly data must be
available from 8:00 AM the day prior. Given the configuration of SPAS, the minimum SPP is
72 hours and aligns midnight to midnight.
The core precipitation period (CPP) is a sub-set of the SPP and represents the time period with
the most precipitation and the greatest number of reporting gauges. The CPP represents the time
period of interest and where our confidence in the results is highest.

Data
The foundation of a SPAS analysis is the “ground truth” precipitation measurements. In fact, the
level of effort involved in “data mining” and quality control represent over half of the total level
of effort needed to conduct a complete storm analysis. SPAS operates with three primary data
sets: precipitation gauge data, a basemap and, if available, radar data. Table E.1 conveys the
variety of precipitation gauges usable by SPAS. For each gauge, the following elements are
gathered, entered and archived into SPAS database:

• Station ID
• Station name
• Station type (H=hourly, D=Daily, S=Supplemental, etc.)
• Longitude in decimal degrees
• Latitude in decimal degrees
• Elevation in feet above MSL
• Observed precipitation
• Observation times
• Source
• If unofficial, the measurement equipment and/or method is also noted.

Based on the SPP and analysis domain, hourly and daily precipitation gauge data are extracted
from our in-house database as well as the Meteorological Assimilation Data Ingest System
(MADIS). Our in-house database contains data dating back to the late 1800s, while the MADIS
system (described below) contains archived data back to 2002.

Hourly Precipitation Data
Our hourly precipitation database is largely comprised of data from NCDC TD-3240, but also
precipitation data from other mesonets and meteorological networks (e.g. ALERT, Flood Control
Districts, etc.) that we have collected and archived as part of previous studies. Meanwhile,
MADIS provides data from a large number of networks across the U.S., including NOAA’s
HADS (Hydrometeorological Automated Data System), numerous mesonets, the Citizen
Weather Observers Program (CWOP), departments of transportation, etc. (see
http://madis.noaa.gov/mesonet_providers.html for a list of providers). Although our automatic
data extraction is fast, cost-effective and efficient, it never captures all of the available
precipitation data for a storm event. For this reason, a thorough “data mining” effort is
undertaken to acquire all available data from sources such as U.S. Geological Survey (USGS),
Remote Automated Weather Stations (RAWS), Community Collaborative Rain, Hail & Snow
Network (CoCoRaHS), National Atmospheric Deposition Program (NADP), Clean Air Status

E - 5

and Trends Network (CASTNET), local observer networks, Climate Reference Network (CRN),
Global Summary of the Day (GSD) and Soil Climate Analysis Network (SCAN). Unofficial
hourly precipitation data are gathered to give guidance on either timing or magnitude in areas
otherwise void of precipitation data. The WeatherUnderground and MesoWest, two of the
largest weather databases on the Internet, contain a large proportion of official data, but also
includes data from unofficial gauges.

Table E.1: Different precipitation gauge types used by SPAS

Precipitation Gauge Type Description
Hourly Hourly gauges with complete, or nearly complete, incremental hourly

precipitation data.
Hourly estimated Hourly gauges with some estimated hourly values, but otherwise reliable.
Hourly pseudo Hourly gauges with reliable temporal precipitation data, but the magnitude is

questionable in relation to co-located daily or supplemental gauge.
Daily Daily gauge with complete data and known observation times.
Daily estimated Daily gauges with some or all estimated data.
Supplemental Gauges with unknown or irregular observation times, but reliable total storm

precipitation data. (E.g. public reports, storms reports, “Bucket surveys”, etc.)
Supplemental estimated Gauges with estimated total storm precipitation values based on other information

(e.g. newspaper articles, stream flow discharge, inferences from nearby gauges,
pre-existing total storm isohyetal maps, etc.)

Daily Precipitation Data
Our daily database is largely based on NCDC’s TD-3206 (pre-1948) and TD-3200 (1948 through
present) as well as SNOTEL data from NRCS. Since the late 1990s, the CoCoRaHS network of
more than 15,000 observers in the U.S. has become a very important daily precipitation source.
Other daily data are gathered from similar, but smaller gauge networks, for instance the High
Spatial Density Precipitation Network in Minnesota.

As part of the daily data extraction process, the time of observation accompanies each measured
precipitation value. Accurate observation times are necessary for SPAS to disaggregate the daily
precipitation into estimated incremental values (discussed later). Knowing the observation time
also allows SPAS to maintain precipitation amounts within given time bounds, thereby retaining
known precipitation intensities. Given the importance of observation times, efforts are taken to
insure the observation times are accurate. Hardcopy reports of “Climatological Data,” scanned
observational forms (available on-line from the NCDC) and/or gauge metadata forms have
proven to be valuable and accurate resources for validating observation times. Furthermore,
erroneous observation times are identified in the mass-curve quality-control procedure (discussed
later) and can be corrected at that point in the process.

Supplemental Precipitation Gauge Data
For gauges with unknown or irregular observation times, the gauge is considered a
“supplemental” gauge. A supplemental gauge can either be added to the storm database with a
storm total and the associated SPP as the temporal bounds or as a gauge with the known, but
irregular observation times and associated precipitation amounts. For instance, if all that is
known is 3 inches fell between 0800-0900, then that information can be entered. Gauges or
reports with nothing more than a storm total are often abundant, but to use them, it is important

E - 6

the precipitation is only from the storm period in question. Therefore, it is ideal to have the
analysis time frame bounded by dry periods.

Perhaps the most important source of data, if available, is from “bucket surveys,” which provide
comprehensive lists of precipitation measurements collected during a post-storm field exercise.
Although some bucket survey amounts are not from conventional precipitation gauges, they
provide important information, especially in areas lacking data. Particularly for PMP-storm
analysis applications, it is customary to accept extreme, but valid non-standard precipitation
values (such as bottles and other open containers that catch rainfall) to capture the highest
precipitation values.

Basemap
“Basemaps” are independent grids of spatially distributed weather or climate variables that are
used to govern the spatial patterns of the hourly precipitation. The basemap also governs the
spatial resolution of the final SPAS grids, unless radar data are available/used to govern the
spatial resolution. Note that a base map is not required as the hourly precipitation patterns can be
based on station characteristics and an inverse distance weighting technique (discussed later).
Basemaps in complex terrain are often based on the PRISM mean monthly precipitation (Figure
E.2a) or Hydrometeorological Design Studies Center precipitation frequency grids (Figure E.2b)
given they resolve orographic enhancement areas and micro-climates at a spatial resolution of
30-seconds (about 800 m). Basemaps of this nature in flat terrain are not as effective given the
small terrain forced precipitation gradients. Therefore, basemaps for SPAS analyses in flat
terrain are often developed from pre-existing (hand-drawn) isohyetal patterns (Figure E.2c),
composite radar imagery or a blend of both.

a) b) c)
Figure E.2: Sample SPAS “basemaps:” (a) A pre-existing (USGS) isohyetal pattern across flat terrain (SPAS

#1209), (b) PRISM mean monthly (October) precipitation (SPAS #1192) and (c) A 100-year 24-hour precipitation
grid from NOAA Atlas 14 (SPAS #1138)

Radar Data
For storms occurring since approximately the mid-1990s, weather radar data are available to
supplement the SPAS analysis. A fundamental requirement for high quality radar-estimated
precipitation is a high quality radar mosaic, which is a seamless collection of concurrent weather
radar data from individual radar sites, however in some cases a single radar is sufficient (i.e. for a
small area size storm event such as a thunderstorm). Weather radar data have been in use by
meteorologists since the 1960s to estimate precipitation depths, but it was not until the early
1990s that new, more accurate NEXRAD Doppler radar (WSR88D) was placed into service
across the United States. Currently, efforts are underway to convert the WSR88D radars to dual

E - 7

polarization (DualPol) radar. Today, NEXRAD radar coverage of the contiguous United States
is comprised of 159 operational sites and there are 30 in Canada. Each U.S. radar covers an
approximate 285 mile (460 km) radial extent while Canadian radars have approximately 256 km
(138 nautical miles) radial extent over which their radar can detect precipitation (see Figure E.3).
The primary vendor of NEXRAD weather radar data for SPAS is Weather Decision
Technologies, Inc. (WDT), who accesses, mosaics, archives and quality-controls NEXRAD
radar data from NOAA and Environment Canada. SPAS utilizes Level II NEXRAD radar
reflectivity data in units of dBZ, available every 5-minutes in the U.S. and 10-minutes in Canada.

Figure E.3: U.S. radar locations and their radial extents of coverage below 10,000 feet above ground level (AGL).

Each U.S. radar covers an approximate 285 mile radial extent over which the radar can detect precipitation.

The WDT and National Severe Storms Lab (NSSL) Radar Data Quality Control Algorithm
(RDQC) removes non-precipitation artifacts from base Level–II radar data and remaps the data
from polar coordinates to a Cartesian (latitude/longitude) grid. Non-precipitation artifacts
include ground clutter, bright banding, sea clutter, anomalous propagation, sun strobes, clear air
returns, chaff, biological targets, and electronic interference and hardware test patterns. The
RDQC algorithm uses sophisticated data processing and a Quality Control Neural Network
(QCNN) to delineate the precipitation echoes caused by radar artifacts (Lakshmanan and Valente
2004). Beam blockages due to terrain are mitigated by using 30 meter DEM data to compute and
then discard data from a radar beam that clears the ground by less than 50 meters and incurs
more than 50% power blockage. A clear-air echo removal scheme is applied to radars in clear-
air mode when there is no precipitation reported from observation gauges within the vicinity of
the radar. In areas of radar coverage overlap, a distance weighting scheme is applied to assign
reflectivity to each grid cell, for multiple vertical levels. This scheme is applied to data from the
nearest radar that is unblocked by terrain.

E - 8

Once data from individual radars have passed through the RDQC, they are merged to create a
seamless mosaic for the United States and southern Canada as shown in Figure E.4. A multi-
sensor quality control can be applied by post-processing the mosaic to remove any remaining
“false echoes.” This technique uses observations of infra-red cloud top temperatures by GOES
satellite and surface temperature to create a precipitation/no-precipitation mask. Figure E.4(b)
shows the impact of WDT’s quality control measures. Upon completing all QC, WDT converts
the radar data from its native polar coordinate projection (1 degree x 1.0 km) into a longitude-
latitude Cartesian grid (based on the WGS84 datum), at a spatial resolution of ~1/3rdmi2 for
processing in SPAS.

a) b)
Figure E.4: (a) Level-II radar mosaic of CONUS radar with no quality control, (b) WDT quality controlled Level-

II radar mosaic

SPAS conducts further QC on the radar mosaic by infilling areas contaminated by beam
blockages. Beam blocked areas are objectively determined by evaluating total storm reflectivity
grid which naturally amplifies areas of the SPAS analysis domain suffering from beam blockage
as shown in Figure E.5.

a) b)
Figure E.5: Illustration of SPAS-beam blockage infilling where (a) is raw, blocked radar and (b) is filled for a 42-

hour storm event

E - 9

Methodology

Daily and Supplemental Precipitation to Hourly
To obtain one hour temporal resolutions and utilize all gauge data, it is necessary to disaggregate
daily and supplemental precipitation observations into estimated hourly amounts. This process
has traditionally been accomplished by distributing (temporally) the precipitation at each
daily/supplemental gauge in accordance to a single nearby hourly gauge (Thiessen polygon
approach). However, this may introduce biases and not correctly represent hourly precipitation
at daily/supplemental gauges situated in-between hourly gauges. Instead, SPAS uses a spatial
approach by which the estimated hourly precipitation at each daily and supplemental gauge is
governed by a distance weighted algorithm of all nearby true hourly gauges.

To disaggregate (i.e. distribute) daily/supplemental gauge data into estimate hourly values, the
true hourly gauge data are first evaluated and quality controlled using synoptic maps, nearby
gauges, orographic effects, gauge history and other documentation on the storm. Any problems
with the hourly data are resolved, and when possible/necessary accumulated hourly values are
distributed. If an hourly value is missing, the analyst can choose to either estimate it or leave it
missing for SPAS to estimate later based on nearby hourly gauges. At this point in the process,
pseudo (hourly) gauges can be added to represent precipitation timing in topographically
complex locations, areas with limited/no hourly data or to capture localized convention. Hourly
Pseudo stations add additional detail on the timing of rainfall, either from COOP forms, radar
reflectivity timing, and/or bucket survey reports with time increments. Hourly Pseudo stations
are used only for the timing surrounding daily and supplemental stations and not for the
magnitude. The limitations of Hourly Pseudo stations is that they are based on surrogate
information, the quality of the information can be highly questionable (based on source) thus the
importance of the station QC procedures are extremely important. To adequately capture the
temporal variations of the precipitation, a pseudo hourly gauge is sometimes necessary. A
pseudo gauge is created by distributing the precipitation at a co-located daily gauge or by
creating a completely new pseudo gauge from other information such as inferences from COOP
observation forms, METAR visibility data (if hourly precipitation are not already available),
lightning data, satellite data, or radar data. Often radar data are the best/only choice for creating
pseudo hourly gauges, but this is done cautiously given the potential differences (over-shooting
of the radar beam equating to erroneous precipitation) between radar data and precipitation. In
any case, the pseudo hourly gauge is flagged so SPAS only uses it for timing and not magnitude.
Care is taken to ensure hourly pseudo gauges represent justifiably important physical and
meteorological characteristics before being incorporated into the SPAS database. Although
pseudo gauges provide a very important role, their use is kept to a minimum. The importance of
insuring the reliability of every hourly gauge cannot be over emphasized. All of the final hourly
gauge data, including pseudos, are included in the hourly SPAS precipitation database.

Using the hourly SPAS precipitation database, each hourly precipitation value is converted into a
percentage that represents the incremental hourly precipitation divided by the total SPP
precipitation. The GIS-ready x-y-z file is constructed for each hour and it includes the latitude
(x), longitude(y) and the percent of precipitation (z) for a particular hour. Using the GRASS
GIS, an inverse-distance-weighting squared (IDW) interpolation technique is applied to each of
the hourly files. The result is a continuous grid with percentage values for the entire analysis

E - 10

domain, keeping the grid cells on which the hourly gauge resides faithful to the observed/actual
percentage. Since the percentages typically have a high degree of spatial autocorrelation, the
spatial interpolation has skill in determining the percentages between gauges, especially since the
percentages are somewhat independent of the precipitation magnitude. The end result is a GIS
grid for each hour that represents the percentage of the SPP precipitation that fell during that
hour.

After the hourly percentage grids are generated and QC’d for the entire SPP, a program is
executed that converts the daily/supplemental gauge data into incremental hourly data. The
timing at each of the daily/supplemental gauges is based on (1) the daily/supplemental gauge
observation time, (2) daily/supplemental precipitation amount and (3) the series of interpolated
hourly percentages extracted from grids (described above).

This procedure is detailed in Figure E.6 below. In this example, a supplemental gauge reported
1.40" of precipitation during the storm event and is located equal distance from the three
surrounding hourly recording gauges. The procedure steps are:

Step 1. For each hour, extract the percent of SPP from the hourly gauge-based percentage at the

location of the daily/supplemental gauge. In this example, assume these values are the
average of all the hourly gauges.

Step 2. Multiply the individual hourly percentages by the total storm precipitation at the
daily/supplemental gauge to arrive at estimated hourly precipitation at the
daily/supplemental gauge. To make the daily/supplemental accumulated precipitation
data faithful to the daily/supplemental observations, it is sometimes necessary to adjust
the hourly percentages so they add up to 100% and account for 100% of the daily
observed precipitation.

Figure E.6: Example of disaggregation of daily precipitation into estimated hourly precipitation based on three (3)

surrounding hourly recording gauges

In cases where the hourly grids do not indicate any precipitation falling during the
daily/supplemental gauge observational period, yet the daily/supplemental gauge reported

E - 11

precipitation, the daily/supplemental total precipitation is evenly distributed throughout the hours
that make up the observational period; although this does not happen very often, this solution is
consistent with NWS procedures. However, the SPAS analyst is notified of these cases in a
comprehensive log file, and in most cases they are resolvable, sometimes with a pseudo hourly
gauge.

Gauge Quality Control
Exhaustive quality control measures are taken throughout the SPAS analysis. Below are a few of
the most significant QC measures taken.

Mass Curve Check
A mass curve-based QC-methodology is used to ensure the timing of precipitation at all gauges
is consistent with nearby gauges. SPAS groups each gauge with the nearest four gauges
(regardless of type) into a single file. These files are subsequently used in software for graphing
and evaluation. Unusual characteristics in the mass curve are investigated and the gauge data
corrected, if possible and warranted. See Figure E.7 for an example.

Figure E.7: Sample mass curve plot depicting a precipitation gauge with an erroneous observation time (red line).

X-axis is the SPAS index hour and the y-axis is inches. The statistics in the upper left denote gauge type, and
distance from target gauge (in km). In this example, the daily gauge (red line) was found to have an observation

error/shift of 6-hours.

Gauge Mis-location Check
Although the gauge elevation is not explicitly used in SPAS, it is however used as a means of
QC’ing gauge location. Gauge elevations are compared to a high-resolution 15-second DEM to
identify gauges with large differences, which may indicate erroneous longitude and/or latitude
values.

E - 12

Co-located Gauge QC
Care is also taken to establish the most accurate precipitation depths at all co-located gauges. In
general, where a co-located gauge pair exists, the highest precipitation is accepted (if deemed
accurate). If the hourly gauge reports higher precipitation, then the co-located daily (or
supplemental) is removed from the analysis since it would not add anything to the analysis.
Often daily (or supplemental) gauges report greater precipitation than a co-located hourly station
since hourly tipping bucket gauges tend to suffer from gauge under-catch, particularly during
extreme events, due to loss of precipitation during tips. In these cases the daily/supplemental is
retained for the magnitude and the hourly used as a pseudo hourly gauge for timing. Large
discrepancies between any co-located gauges are investigated and resolved since SPAS can only
utilize a single gauge magnitude at each co-located site.

Spatial Interpolation
At this point the QC’d observed hourly and disaggregated daily/supplemental hourly
precipitation data are spatially interpolated into hourly precipitation grids. SPAS has three
options for conducting the hourly precipitation interpolation, depending on the terrain and
availability of radar data, thereby allowing SPAS to be optimized for any particular storm type or
location. Figure E.8 depicts the results of each spatial interpolation methodology based on the
same precipitation gauge data.

a) b) c)
Figure E.8: Depictions of total storm precipitation based on the three SPAS interpolation methodologies for a
storm (SPAS #1177, Vanguard, Canada) across flat terrain: (a) no basemap, (b) basemap-aided and (c) radar

Basic Approach
The basic approach interpolates the hourly precipitation point values to a grid using an inverse
distance weighting squared GIS algorithm. This is sometimes the best choice for convective
storms over flat terrain when radar data are not available, yet high gauge density instills reliable
precipitation patterns. This approach is rarely used.

Basemap Approach
Another option includes use of a basemap, also known as a climatologically-aided interpolation
(Hunter 2005). As noted before, the spatial patterns of the basemap govern the interpolation
between points of hourly precipitation estimates, while the actual hourly precipitation values
govern the magnitude. This approach to interpolating point data across complex terrain is widely
used. In fact, it was used extensively by the NWS during their storm analysis era from the 1940s
through the 1970s (USACE 1973, Hansen et al., 1988, Corrigan et al., 1999).

In application, the hourly precipitation gauge values are first normalized by the corresponding
grid cell value of the basemap before being interpolated. The normalization allows information

E - 13

and knowledge from the basemap to be transferred to the spatial distribution of the hourly
precipitation. Using an IDW squared algorithm, the normalized hourly precipitation values are
interpolated to a grid. The resulting grid is then multiplied by the basemap grid to produce the
hourly precipitation grid. This is repeated each hour of the storm.

Radar Approach
The coupling of SPAS with NEXRAD provides the most accurate method of spatially and
temporally distributing precipitation. To increase the accuracy of the results however, quality-
controlled precipitation observations are used for calibrating the radar reflectivity to rain rate
relationship (Z-R relationship) each hour instead of assuming a default Z-R relationship. Also,
spatial variability in the Z-R relationship is accounted for through local bias corrections
(described later). The radar approach involves several steps, each briefly described below. The
radar approach cannot operate alone – either the basic or basemap approach must be completed
before radar data can be incorporated. The SPAS general code is where the daily and
supplemental station are timed to hourly data. Therefore, to get the correct timing of daily and
supplemental stations, SPAS general needs to be run. The timed hourly data are used as input
into SPAS-NEXRAD to derive the dynamic ZR relationship each hour.

Basemaps are only used to aid in the spatial interpolation. In regards to SPAS-NEXRAD, a
basemap is used to interpolate the radar residuals (bias adjustments).

Z-R Relationship
SPAS derives high quality precipitation estimates by relating quality controlled level–II
NEXRAD radar reflectivity radar data with quality-controlled precipitation gauge data to
calibrate the Z-R (radar reflectivity, Z, and precipitation, R) relationship. Optimizing the Z-R
relationship is essential for capturing temporal changes in the Z-R. Most current radar-derived
precipitation techniques rely on a constant relationship between radar reflectivity and
precipitation rate for a given storm type (e.g. tropical, convective), vertical structure of
reflectivity and/or reflectivity magnitudes. This non-linear relationship is described by the Z-R
equation below:

Z = A Rb (1)

Where Z is the radar reflectivity (measured in units of dBZ), R is the precipitation (precipitation)
rate (millimeters per hour), A is the “multiplicative coefficient” and b is the “power coefficient”.
Both A and b are directly related to the rain drop size distribution (DSD) and rain drop number
distribution (DND) within a cloud (Martner and Dubovskiy 2005). The variability in the results
of Z versus R is a direct result of differing DSD, DND and air mass characteristics (Dickens
2003). The DSD and DND are determined by complex interactions of microphysical processes
that fluctuate regionally, seasonally, daily, hourly, and even within the same cloud. For these
reasons, SPAS calculates an optimized Z-R relationship across the analysis domain each hour,
based on observed precipitation rates and radar reflectivity (see Figure E.9).

E - 14

Figure E.9: Example SPAS (denoted as “Exponential”) vs. default Z-R relationship (SPAS #1218, Georgia

September 2009)

The National Weather Service (NWS) utilizes different default Z-R algorithms, depending on the
type of precipitation event, to estimate precipitation from NEXRAD radar reflectivity data across
the United States (see Figure E.10) (Baeck and Smith 1998 and Hunter 1999). A default Z-R
relationship of Z = 300R1.4 is the primary algorithm used throughout the continental U.S.
However, it is widely known that this, compared to unadjusted radar-aided estimates of
precipitation, suffers from deficiencies that may lead to significant over or under-estimation of
precipitation.

Figure E.10: Commonly used Z-R algorithms used by the NWS

Instead of adopting a standard Z-R, SPAS utilizes a least squares fit procedure for optimizing the
Z-R relationship each hour of the SPP. The process begins by determining if sufficient
(minimum 12) observed hourly precipitation and radar data pairs are available to compute a
reliable Z-R. If insufficient (<12) gauge pairs are available, then SPAS adopts the previous hour
Z-R relationship, if available, or applies a user-defined default Z-R algorithm. If sufficient data
are available, the one hour sum of NEXRAD reflectivity (Z) is related to the 1-hour precipitation
at each gauge. A least-squares-fit exponential function using the data points is computed. The

E - 15

resulting best-fit, one hour-based Z-R is subjected to several tests to determine if the Z-R
relationship and its resulting precipitation rates are within a certain tolerance based on the R-
squared fit measure and difference between the derived and default Z-R precipitation results.
Experience has shown the actual Z-R versus the default Z-R can be significantly different
(Figure E.11). These Z-R relationships vary by storm type and location. A standard output of all
SPAS analyses utilizing NEXRAD includes a file with each hour's adjusted Z-R relationship as
calculated through the SPAS program.

Figure E.11: Comparison of the SPAS optimized hourly Z-R relationships (black lines) versus a default Z=75R2.0

Z-R relationship (red line) for a period of 99 hours for a storm over southern California.

Radar-aided Hourly Precipitation Grids
Once a mathematically optimized hourly Z-R relationship is determined, it is applied to the total
hourly Z grid to compute an initial precipitation rate (inches/hour) at each grid cell. To account
for spatial differences in the Z-R relationship, SPAS computes residuals, the difference between
the initial precipitation analysis (via the Z-R equation) and the actual “ground truth” precipitation
(observed – initial analysis), at each gauge. The point residuals, also referred to as local biases,
are normalized and interpolated to a residual grid using an inverse distance squared weighting
algorithm. A radar-based hourly precipitation grid is created by adding the residual grid to the
initial grid; this allows precipitation at the grid cells for which gauges are “on” to be true and
faithful to the gauge measurement. The pre-final radar-aided precipitation grid is subject to
some final, visual QC checks to ensure the precipitation patterns are consistent with the terrain;
these checks are particularly important in areas of complex terrain where even QC’d radar data
can be unreliable. The next incremental improvement with SPAS program will come as the
NEXRAD radar sites are upgraded to dual-polarimetric capability.

Radar- and Basemap-Aided Hourly Precipitation Grids
At this stage of the radar approach, a radar- and basemap-aided hourly precipitation grid exists
for each hour. At locations with precipitation gauges, the grids are equal, however elsewhere the
grids can vary for a number of reasons. For instance, the basemap-aided hourly precipitation

E - 16

grid may depict heavy precipitation in an area of complex terrain, blocked by the radar, whereas
the radar-aided hourly precipitation grid may suggest little, if any, precipitation fell in the same
area. Similarly, the radar-aided hourly precipitation grid may depict an area of heavy
precipitation in flat terrain that the basemap-approach missed since the area of heavy
precipitation occurred in an area without gauges. SPAS uses an algorithm to compute the hourly
precipitation at each pixel given the two results. Areas that are completely blocked from a radar
signal are accounted for with the basemap-aided results (discussed earlier). Precipitation in areas
with orographically effective terrain and reliable radar data are governed by a blend of the
basemap- and radar-aided precipitation. Elsewhere, the radar-aided precipitation is used
exclusively. This blended approach has proven effective for resolving precipitation in complex
terrain, yet retaining accurate radar-aided precipitation across areas where radar data are reliable.
Figure E.12 illustrates the evolution of final precipitation from radar reflectivity in an area of
complex terrain in southern California.

Figure E.12a: Map depicting 1-hour of precipitation utilizing inverse distance weighting of gauge

precipitation for a January 2005 storm in southern California, USA

E - 17

Figure E.12b: Map depicting 1-hour of precipitation utilizing gauge data together with a climatologically-

aided interpolation scheme for a January 2005 storm in southern California, USA

Figure E.12c: Map depicting 1-hour of precipitation utilizing default Z-R radar-estimated interpolation (no gauge

correction) for a January 2005 storm in southern California, USA

E - 18

Figure E.12d: Map depicting 1-hour of precipitation utilizing SPAS precipitation for a January 2005 storm in

southern California, USA

SPAS versus Gauge Precipitation
Performance measures are computed and evaluated each hour to detect errors and inconsistencies
in the analysis. The measures include: hourly Z-R coefficients, observed hourly maximum
precipitation, maximum gridded precipitation, hourly bias, hourly mean absolute error (MAE),
root mean square error (RMSE), and hourly coefficient of determination (r2).

Figure E.13: Z-R plot (a), where the blue line is the SPAS derived Z-R and the black line is the default Z-R, and

the (b) associated observed versus SPAS scatter plot at gauge locations.

Comparing SPAS-calculated precipitation (Rspas) to observed point precipitation depths at the
gauge locations provides an objective measure of the consistency, accuracy and bias. Generally

E - 19

speaking SPAS is usually within 5% of the observed precipitation (see Figure E.13). Less-than-
perfect correlations between SPAS precipitation depths and observed precipitation at gauged
locations could be the result of any number of issues, including:

• Point versus area: A rain gauge observation represents a much smaller area than the area
sampled by the radar. The area that the radar is sampling is approximately 1 km2, whereas a
standard rain gauge has an opening 8 inches in diameter, hence it only samples approximately
8.0x10-9 km2. Furthermore, the radar data represent an average reflectivity (Z) over the grid cell,
when in fact the reflectivity can vary across the 1 km2 grid cell. Therefore, comparing a grid cell
radar derived precipitation value to a gauge (point) precipitation depth measured may vary.

• Precipitation gauge under-catch: Although we consider gauge data “ground truth,” we
recognize gauges themselves suffer from inaccuracies. Precipitation gauges, shielded and
unshielded, inherently underestimate total precipitation due to local airflow, wind under-catch,
wetting, and evaporation. The wind under-catch errors are usually around 5% but can be as large
as 40% in high winds (Guo et al., 2001, Duchon and Essenberg 2001, Ciach 2003, Tokay et al.,
2010). Tipping buckets miss a small amount of precipitation during each tip of the bucket due to
the bucket travel and tip time. As precipitation intensities increase, the volumetric loss of
precipitation due to tipping tends to increase. Smaller tipping buckets can have higher volumetric
losses due to higher tip frequencies, but on the other hand capture higher precision timing.

• Radar Calibration: NEXRAD radars calibrate reflectivity every volume scan, using an
internally generated test. The test determines changes in internal variables such as beam power
and path loss of the receiver signal processor since the last off-line calibration. If this value
becomes large, it is likely that there is a radar calibration error that will translate into less reliable
precipitation estimates. The calibration test is supposed to maintain a reflectivity precision of 1
dBZ. A 1 dBZ error can result in an error of up to 17% in Rspas using the default Z-R relationship
Z=300R1.4. Higher calibration errors will result in higher Rspas errors. However, by performing
correlations each hour, the calibration issue is minimized in SPAS.

• Attenuation: Attenuation is the reduction in power of the radar beams’ energy as it travels from
the antenna to the target and back. It is caused by the absorption and the scattering of power from
the beam by precipitation. Attenuation can result in errors in Z as large as 1 dBZ especially when
the radar beam is sampling a large area of heavy precipitation. In some cases, storm precipitation
is so intense (>12 inches/hour) that individual storm cells become “opaque” and the radar beam is
totally attenuated. Armed with sufficient gauge data however, SPAS will overcome attenuation
issues.

• Range effects: The curvature of Earth and radar beam refraction result in the radar beam
becoming more elevated above the surface with increasing range. With the increased elevation of
the radar beam comes a decrease in Z values due to the radar beam not sampling the main
precipitation portion of the cloud (i.e. “over topping” the precipitation and/or cloud altogether).
Additionally, as the radar beam gets further from the radar, it naturally samples a larger and larger
area, therefore amplifying point versus area differences (described above).

• Radar Beam Occultation/Ground Clutter: Radar occultation (beam blockage) results when
the radar beam’s energy intersects terrain features as depicted in Figure E.14. The result is an
increase in radar reflectivity values that can result in higher than normal precipitation estimates.
The WDT processing algorithms account for these issues, but SPAS uses GIS spatial
interpolation functions to infill areas suffering from poor or no radar coverage.

• Anomalous Propagation (AP): AP is false reflectivity echoes produced by unusual rates of
refraction in the atmosphere. WDT algorithms remove most of the AP and false echoes, however
in extreme cases the air near the ground may be so cold and dense that a radar beam that starts out
moving upward is bent all the way down to the ground. This produces erroneously strong echoes
at large distances from the radar. Again, equipped with sufficient gauge data, the SPAS bias
corrections will overcome AP issues.

E - 20

Figure E.14: Depiction of radar artifacts. (Source: Wikipedia)

SPAS is designed to overcome many of these short-comings by carefully using radar data for
defining the spatial patterns and relative magnitudes of precipitation, but allowing measured
precipitation values (“ground truth”) at gauges to govern the magnitude. When absolutely
necessary, the observed precipitation values at gauges are nudged up (or down) to force SPAS
results to be consistent with observed gauge values. Nudging gauge precipitation values helps to
promote better consistency between the gauge value and the grid-cell value, even though these
two values sometimes should not be the same since they are sampling different area sizes. For
reasons discussed in the "SPAS versus Gauge Precipitation" section, the gauge value and grid-
cell value can vary. Plus, SPAS is designed to toss observed individual hourly values that are
grossly inconsistent with radar data, hence driving a difference between the gauge and grid-cell.
In general, when the gauge and grid-cell value differ by more than 15% and/or 0.50 inches, and
the gauge data have been validated, then it is justified to artificially increase or decrease slightly
the observed gauge value to "force" SPAS to derive a grid-cell value equal to the observed value.
Sometimes simply shifting the gauge location to an adjacent grid-cell resolves the problems.
Regardless, a large gauge versus grid-cell difference is a "red flag" and sometimes the result of
an erroneous gauge value or a mis-located gauge, but in some cases the difference can only be
resolved by altering the precipitation value.

Before results are finalized, a precipitation intensity check is conducted to ensure the spatial
patterns and magnitudes of the maximum storm intensities at 1-, 6-, 12-, etc. hours are consistent
with surrounding gauges and published reports. Any erroneous data are corrected and SPAS re-
run. Considering all of the QA/QC checks in SPAS, it typically requires 5-15 basemap SPAS
runs and, if radar data are available, another 5-15 radar-aided runs, to arrive at the final output.

Test Cases
To check the accuracy of the DAD software, three test cases were evaluated.

“Pyramidville” Storm
The first test was that of a theoretical storm with a pyramid shaped isohyetal pattern. This case
was called the Pyramidville storm. It contained 361 hourly stations, each occupying a single
grid-cell. The configuration of the Pyramidville storm (see Figure E.15) allowed for
uncomplicated and accurate calculation of the analytical DA truth independent of the DAD

E - 21

software. The main motivation of this case was to verify that the DAD software was properly
computing the area sizes and average depths.

1. Storm center: 39°N 104°W
2. Duration: 10-hours
3. Maximum grid-cell precipitation: 1.00”
4. Grid-cell resolution: 0.06 sq.-miles (361 total cells)
5. Total storm size: 23.11 sq-miles
6. Distribution of precipitation:

Hour 1: Storm drops 0.10” at center (area 0.06 mi2)
Hour 2: Storm drops 0.10” over center grid-cell AND over one cell width around hour
1 center
Hours 3-10:

1. Storm drops 0.10” per hour at previously wet area, plus one cell width around
previously wet area

2. Area analyzed at every 0.10”
3. Analysis resolution: 15-sec (~.25 mi2)

Figure E.15: "Pyramidville” Total precipitation. Center = 1.00”, Outside edge = 0.10”

The analytical truth was calculated independent of the DAD software, and then compared to the
DAD output. The DAD software results were equal to the truth, thus demonstrating that the DA
estimates were properly calculated (Figure E.16).

E - 22

Figure E.16: 10-hour DA results for “Pyramidville”; truth vs. output from DAD software

The Pyramidville storm was then changed such that the mass curve and spatial interpolation
methods would be stressed. Test cases included:

• Two-centers, each center with 361 hourly stations
• A single center with 36 hourly stations, 0 daily stations
• A single center with 3 hourly stations and 33 daily stations

As expected, results began shifting from the ‘truth,’ but minimally and within the expected
uncertainty.

Ritter, Iowa Storm, June 7, 1953
Ritter, Iowa was chosen as a test case for a number of reasons. The NWS had completed a storm
analysis, with available DAD values for comparison. The storm occurred over relatively flat
terrain, so orographics were not an issue. An extensive “bucket survey” provided a great number
of additional observations from this event. Of the hundreds of additional reports, about 30 of the
most accurate reports were included in the DAD analysis. The DAD software results are very
similar to the NWS DAD values (Table E.2).
Table E.2: The percent difference [(AWA-NWS)/NWS] between the AWA DA results and those published by the

NWS for the 1953 Ritter, Iowa storm.

% Difference
 Duration (hours)
Area (sq.mi.) 6 12 24 total
10 -15% -7% 2% 2%
100 -7% -6% 1% 1%
200 2% 0% 9% 9%
1000 -6% -7% 4% 4%
5000 -13% -8% 2% 2%
10000 -14% -6% 0% 0%

Depth-Area Curves for 10-hr Storm
"Pyramidville" - 39.5N 104.5W & 39N 104W

0.1000

1.0000

10.0000

100.0000

0 0.2 0.4 0.6 0.8 1 1.2

Maximum Average Precipitation Depth (inches)

A
re

a
(s

q.
 m

i.)

DAD Software
Analytical truth

E - 23

Westfield, Massachusetts Storm, August 8, 1955
Westfield, Massachusetts was also chosen as a test case for a number of reasons. It is a probable
maximum precipitation (PMP) driver for the northeastern United States. Also, the Westfield
storm was analyzed by the NWS and the DAD values are available for comparison. Although
this case proved to be more challenging than any of the others, the final results are very similar
to those published by the NWS (Table E.3).

Table E.3: The percent difference [(AWA-NWS)/NWS] between the AWA DA results and those published by the
NWS for the 1955 Westfield, Massachusetts storm

% Difference
 Duration (hours)
Area (sq. mi.) 6 12 24 36 48 60 total

10 2% 3% 0% 1% -1% 0% 2%
100 -5% 2% 4% -2% -6% -4% -3%
200 -6% 1% 1% -4% -7% -5% -5%
1000 -4% -2% 1% -6% -7% -6% -3%
5000 3% 2% -3% -3% -5% -5% 0%
10000 4% 9% -5% -4% -7% -5% 1%
20000 7% 12% -6% -3% -4% -3% 3%

The primary components of SPAS are: storm search, data extraction, quality control (QC),
conversion of daily precipitation data into estimated hourly data, hourly and total storm
precipitation grids/maps and a complete storm-centered DAD analysis.

Output
Armed with accurate, high-resolution precipitation grids, a variety of customized output can be
created (see Figures E.17A-D). Among the most useful outputs are sub-hourly precipitation
grids for input into hydrologic models. Sub-hourly (i.e. 5-minute) precipitation grids are created
by applying the appropriate optimized hourly Z-R (scaled down to be applicable for
instantaneous Z) to each of the individual 5-minute radar scans; 5-minutes is often the native
scan rate of the radar in the US. Once the scaled Z-R is applied to each radar scan, the resulting
precipitation is summed up. The proportion of each 5-minute precipitation to the total 1-hour
radar-aided precipitation is calculated. Each 5-minute proportion (%) is then applied to the
quality controlled, bias corrected 1-hour total precipitation (created above) to arrive at the final 5
minute precipitation for each scan. This technique ensures the sum of 5-minute precipitation
equals that of the quality controlled, bias corrected 1-hour total precipitation derived initially.
Depth-area-duration (DAD) tables/plots, shown in Figure E.17d, are computed using a highly-
computational extension to SPAS. DADs provide an objective three dimensional (magnitude,
area size, and duration) perspective of a storms’ precipitation. SPAS DADs are computed using
the procedures outlined by the NWS Technical Paper 1 (1946).

E - 24

a) b)

c) d)
Figure E.17: Various examples of SPAS output, including (a) total storm map and its associated (b) basin average

precipitation time series, (c) total storm precipitation map, (d) depth-area-duration (DAD) table and plot

Summary
Grounded on years of scientific research with a demonstrated reliability in post-storm analyses,
SPAS is a hydro-meteorological tool that provides accurate precipitation analyses for a variety of
applications. SPAS has the ability to compute precise and accurate results by using sophisticated
timing algorithms, basemaps, a variety of precipitation data and most importantly NEXRAD
weather radar data (if available). The approach taken by SPAS relies on hourly, daily and
supplemental precipitation gauge observations to provide quantification of the precipitation
amounts while relying on basemaps and NEXRAD data (if available) to provide the spatial
distribution of precipitation between precipitation gauge sites. By determining the most
appropriate coefficients for the Z-R equation on an hourly basis, the approach anchors the
precipitation amounts to accepted precipitation gauge data while using the NEXRAD data to
distribute precipitation between precipitation gauges for each hour of the storm. Hourly Z-R
coefficient computations address changes in the cloud microphysics and storm characteristics as
the storm evolves. Areas suffering from limited or no radar coverage are estimated using the
spatial patterns and magnitudes of the independently created basemap precipitation grids.
Although largely automated, SPAS is flexible enough to allow hydro-meteorologists to make
important adjustments and adapt to any storm situation.

E - 25

References

Baeck M.L., Smith J.A., 1998: “Precipitation Estimation by the WSR-88D for Heavy

Precipitation Events”, Weather and Forecasting: Vol. 13, No. 2, pp. 416–436.
Ciach, G.J., 2003: Local Random Errors in Tipping-Bucket Rain Gauge Measurements.

J. Atmos. Oceanic Technol., 20, 752–759.
Corps of Engineers, U.S. Army, 1945-1973: Storm Rainfall in the United States, Depth-Area-

Duration Data. Office of Chief of Engineers, Washington, D.C.
Corrigan, P., Fenn, D.D., Kluck, D.R., and J.L. Vogel, 1999: Probable Maximum Precipitation

Estimates for California. Hydrometeorological Report No. 59, U.S. National Weather
Service, National Oceanic and Atmospheric Administration, U.S. Department of
Commerce, Silver Spring, MD, 392 pp.

Dickens, J., 2003: “On the Retrieval of Drop Size Distribution by Vertically Pointing Radar”,
American Meteorological Society 32nd Radar Meteorology Conference, Albuquerque,
NM, October 2005.

Duchon, C.E., and G.R. Essenberg, 2001: Comparative Precipitation Observations from Pit and
Above Ground Rain Gauges with and without Wind Shields, Water Resources Research,
Vol. 37, N. 12, 3253-3263.

Faulkner, E., T. Hampton, R.M. Rudolph, and Tomlinson, E.M., 2004: Technological Updates
for PMP and PMF – Can They Provide Value for Dam Safety Improvements?
Association of State Dam Safety Officials Annual Conference, Phoenix, Arizona,
September 26-30, 2004.

Guo, J. C. Y., Urbonas, B., and Stewart, K., 2001: Rain Catch under Wind and Vegetal Effects.
ASCE, Journal of Hydrologic Engineering, Vol. 6, No. 1.

Hansen, E.M., Fenn, D.D., Schreiner, L.C., Stodt, R.W., and J.F., Miller, 1988: Probable
Maximum Precipitation Estimates, United States between the Continental Divide and the
103rd Meridian, Hydrometeorological Report Number 55A, National weather Service,
National Oceanic and Atmospheric Association, U.S. Dept of Commerce, Silver Spring,
MD, 242 pp.

Hunter, R.D. and R.K. Meentemeyer, 2005: Climatologically Aided Mapping of Daily
Precipitation and Temperature, Journal of Applied Meteorology, October 2005, Vol. 44,
pp. 1501-1510.

Hunter, S.M., 1999: Determining WSR-88D Precipitation Algorithm Performance Using The
Stage III Precipitation Processing System, Next Generation Weather Radar Program,
WSR-88D Operational Support Facility, Norman, OK.

Lakshmanan, V. and M. Valente, 2004: Quality control of radar reflectivity data using satellite
data and surface observations, 20th Int’l Conf. on Inter. Inf. Proc. Sys. (IIPS) for
Meteor., Ocean., and Hydr., Amer. Meteor. Soc., Seattle, CD-ROM, 12.2.

Martner, B.E, and V. Dubovskiy, 2005: Z-R Relations from Raindrop Disdrometers: Sensitivity
To Regression Methods And DSD Data Refinements, 32nd Radar Meteorology
Conference, Albuquerque, NM, October, 2005

Tokay, A., P.G. Bashor, and V.L. McDowell, 2010: Comparison of Rain Gauge Measurements
in the Mid-Atlantic Region. J. Hydrometeor., 11, 553-565.

Tomlinson, E.M., W.D. Kappel, T.W. Parzybok, B. Rappolt, 2006: Use of NEXRAD Weather
Radar Data with the Storm Precipitation Analysis System (SPAS) to Provide High Spatial

E - 26

Resolution Hourly Precipitation Analyses for Runoff Model Calibration and Validation,
ASDSO Annual Conference, Boston, MA.

Tomlinson, E.M., and T.W. Parzybok, 2004: Storm Precipitation Analysis System (SPAS),
proceedings of Association of Dam Safety Officials Annual Conference, Technical
Session II, Phoenix, Arizona.

Tomlinson, E.M., R.A. Williams, and T.W. Parzybok, September 2003: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Great Sacandaga Lake / Stewarts Bridge
Drainage Basin, Prepared for Reliant Energy Corporation, Liverpool, New York.

Tomlinson, E.M., R.A. Williams, and T.W. Parzybok, September 2003: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Cherry Creek Drainage Basin, Prepared for
the Colorado Water Conservation Board, Denver, CO.

Tomlinson, E.M., Kappel W.D., Parzybok, T.W., Hultstrand, D., Muhlestein, G., and B. Rappolt,
May 2008: Site-Specific Probable Maximum Precipitation (PMP) Study for the
Wanahoo Drainage Basin, Prepared for Olsson Associates, Omaha, Nebraska.

Tomlinson, E.M., Kappel W.D., Parzybok, T.W., Hultstrand, D., Muhlestein, G., and B. Rappolt,
June 2008: Site-Specific Probable Maximum Precipitation (PMP) Study for the
Blenheim Gilboa Drainage Basin, Prepared for New York Power Authority, White
Plains, NY.

Tomlinson, E.M., Kappel W.D., and T.W. Parzybok, February 2008: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Magma FRS Drainage Basin, Prepared for
AMEC, Tucson, Arizona.

Tomlinson, E.M., Kappel W.D., Parzybok, T.W., Hultstrand, D., Muhlestein, G., and P. Sutter,
December 2008: Statewide Probable Maximum Precipitation (PMP) Study for the state
of Nebraska, Prepared for Nebraska Dam Safety, Omaha, Nebraska.

Tomlinson, E.M., Kappel, W.D., and Tye W. Parzybok, July 2009: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Scoggins Dam Drainage Basin, Oregon.

Tomlinson, E.M., Kappel, W.D., and Tye W. Parzybok, February 2009: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Tuxedo Lake Drainage Basin, New York.

Tomlinson, E.M., Kappel, W.D., and Tye W. Parzybok, February 2010: Site-Specific Probable
Maximum Precipitation (PMP) Study for the Magma FRS Drainage Basin, Arizona.

Tomlinson, E.M., Kappel W.D., Parzybok, T.W., Hultstrand, D.M., Muhlestein, G.A., March
2011: Site-Specific Probable Maximum Precipitation Study for the Tarrant Regional
Water District, Prepared for Tarrant Regional Water District, Fort Worth, Texas.

Tomlinson, E.M., Kappel, W.D., Hultstrand, D.M., Muhlestein, G.A., and T. W. Parzybok,
November 2011: Site-Specific Probable Maximum Precipitation (PMP) Study for the
Lewis River basin, Washington State.

Tomlinson, E.M., Kappel, W.D., Hultstrand, D.M., Muhlestein, G.A., and T. W. Parzybok,
December 2011: Site-Specific Probable Maximum Precipitation (PMP) Study for the
Brassua Dam basin, Maine.

U.S. Weather Bureau, 1946: Manual for Depth-Area-Duration analysis of storm precipitation.
 Cooperative Studies Technical Paper No. 1, U.S. Department of Commerce,
Weather Bureau, Washington, D.C., 73pp

F - 1

Appendix F
Storm Data (Separate Binding)

G - 1

Appendix G
GIS PMP Tool Documentation

G - 2

1. PMP Tool Description and Usage

The PMP Evaluation Tool employed in this study uses a Python-based script designed to run
within the ArcGIS environment. ESRI’s ArcGIS Desktop Basic software, version 1.4 or later, is
required to run the tool, and it is recommended that the user have a basic familiarity with the
operation of this software. The tool provides gridded PMP values at a spatial resolution of 90
arc-seconds (equivalent to .025 x .025 decimal degrees) for a user-designated drainage basin or
area at user-specified durations, in addition to basin average PMP depths and temporally
distributed accumulations.

1.1 File Structure
The tool, source script, and the storm databases are stored within the ‘PMP_Evaluation_Tool’
project folder. The file and directory structure within the ‘PMP_Evaluation_Tool’ folder should
be maintained as it is provided, as the script will locate various data based on its relative location
within the project folder. If the subfolders or geodatabases within are relocated or renamed, then
the script must be updated to account for these changes.

The file structure consists of only two subfolders: Input and Script. The ‘Input’ folder contains
all input GIS files (Figure 1.1). There are three ArcGIS file geodatabase containers within the
‘Input’ folder: DAD_Tables.gdb, Storm_Adj_Factors.gdb, and Non_Storm_Data.gdb. The
DAD_Tables.gdb contains the DAD tables (in file geodatabase table format) for each of the
SPAS-analyzed storm DAD zones included in the storm database. The Storm_Adj_Factors.gdb
contains a feature class for each storm center and stores the adjustment factors for each grid point
as a separate feature. These feature classes are organized into feature datasets, according to storm
type (General, Local, and Tropical). The storm adjustment factor feature classes share their name
with their DAD Table counterpart. The naming convention is SPAS_XXXX_Y, where XXXX is
the SPAS storm ID number and Y is the DAD zone number. In the case of a hybrid storm (i.e., a
storm that is run as both a general and local storm type), there will be a suffix “_gen” or “_loc”
to differentiate the storm type specific to the adjustment factors in the feature class. Finally, the
Non_Storm_Data.gdb contains spatial data not directly relating to the input rainfall depth or
adjustment factors such as the grid network vector files. The geodatabase also contains the
temporal distribution pattern tables and a table and a feature class of the storm center locations.

Figure 1.1 - PMP tool file structure.

The ‘Script’ folder contains an ArcToolbox called PMP_Tools.tbx. The toolbox contains a script
tool called ‘Gridded PMP Tool’ that is used to calculate basin PMP. ArcGIS Desktop should be
used for viewing the GIS tool file structure and interacting with the input and output geospatial

G - 3

data and metadata. A typical operating system’s file browser does not allow access to the
geodatabase containers and cannot be used to directly run the tool.

1.2 Usage
The ‘Gridded PMP Tool’ tool stored within the PMP_Tools.tbx. ArcToolbox opens and runs the
script within the ArcGIS environment and can be run from ArcCatalog an ArcMap map session.
In addition to running as a standalone tool, the tool can be incorporated into Model Builder or be
called as a sub-function of another script.

To run the tool, the user navigates to the PMP_Tools.tbx toolbox, expands it, and opens the PMP
tool. The dialogue window opens and the user populates input parameters (see Figure 1.2) and
clicks the ‘OK’ button. The tool will run in the foreground and display text output in the
Messages window. Processing time can vary greatly depending on AOI size, the number of
durations selected, and computer hardware. Most basins generally take 5 to 10 minutes to
analyze all three storm types. The tool produces PMP output described in Section 1.4.

1.3 Input Parameters
The tool requires twelve parameters as input to define the area and durations to be analyzed (
Table 1.1).

Table 1.1 - Parameters for the PMP calculation tool.

Figure 1.2 shows the tool dialogue window with each of the input parameters. The first
parameter required by the tool dialogue is a feature layer, such as a basin shapefile or feature
class, designed to outline the area of interest (AOI) for the PMP analysis. If the AOI dataset does
not have a surface projection, the tool will apply the Albers Equal Area projection for the
purpose of calculating the AOI area size. If the feature layer has multiple features (or polygons),
the tool will use the combined area as the analysis region. Only the selected polygons will be
used if the tool is run from the ArcMap environment with selected features highlighted. If the
AOI shapefile extends beyond the project analysis domain PMP will only be calculated for grid

G - 4

cells inside the project domain. The AOI shapefile or feature class should not have any spaces or
symbol characters in the filename.

The second parameter requires the path of the ‘PMP_Evaluation_Tool’ folder. The default
location of the folder is set within the tool parameters, but it can be changed if the user wishes to
link the tool to another set of input datasets. The ‘PMP_Evaluation_Tool’ project folder should
be stored locally at a location that can be accessed (both read/write) by ArcGIS desktop. The
user will need to set the ‘Output Folder’ path which provides the tool with the location to create
the output PMP files. The user must have read/write privileges for this folder location. The user
then selects the durations to be run for each storm type. The next parameter allows the user may
override the default to use the input basin feature area size for areal-average PMP calculations
and enter a custom area (in square miles). A manually entered area-size will override the basin
area-size in the PMP calculations. Next, the user has the option to have the tool perform a
weighted analysis on the grid cells underlying the AOI boundary. If this option is checked each
boundary grid cell depth will be weighted by the portion of the cell’s area inside the basin for the
purposed of the basin area PMP table calculations. Finally, there is an option to include sub-
basin averages. This will calculate an average PMP depth for each feature in the input basin
feature class from the overall basin PMP. The average sub-basin depths will be based on the
area-size of the overall basin. If the ‘weighted’ option was selected above it will also be applied
to the sub-basin averages. If the AOI has multiple features (or sub-basins) the ‘Include sub-basin
averages’ option can be selected to calculate the basin average PMP over each sub-basin. The
user must select a field within the AOI to be used to identify each sub-basin. The field can be of
numeric or text data type, but must have a unique ID for each polygon. The user can also choose
to include a depth-duration chart .png image in the output folder for each storm type. Finally, the
user can select the option to apply the appropriate temporal distribution patterns to the basin
average PMP for each storm type. If this option is selected, the above options to select specific
durations will no longer be available as the tool will need to run all the durations to properly
apply temporal distributions.

G - 5

Figure 1.2: The PMP Evaluation Tool input dialogue window

G - 6

The Validation tab of the tool properties contains some custom scripting to handle the input
parameter formatting.

1.4 Tool Output
Once the tool has been run, the output file geodatabases will be populated with the model results.
The GIS files can then be brought into an ArcMap, or other compatible GIS environments, for
mapping and analysis. The tool is set to have overwrite capabilities; if output data exists, it will
be overwritten the next time the tool is run, if the same output folder and same parameters are
used.

A separate output folder is created for each storm type and the output is organized within file
geodatabases and named according to the input basin feature name and analyzed PMP area. Each
output file geodatabase contains a feature class which stores each grid point centroid within the
basin as a separate feature. Each feature has a field for the grid ID, latitude, longitude, analysis
zone, elevation, PMP (for each duration), and the contributing storm ID. The PMP raster files are
also stored within the file geodatabase. The naming convention for the raster files is the storm
type and duration (L for local/MCS, G for general, and T for tropical), followed by the input
basin feature name, and ending with the basin area (in square miles). An example of the output
file structure is shown in Figure 1.3.

Figure 1.3: Example of the PMP tool output file structure

1.5 Python Script

Due to the large number of storm datasets and grid points within the project domain, a scripted
process is well suited for comparing each value efficiently and accurately for a given area of
interest and make the necessary calculations. ArcGIS has integrated the Python scripting
language to allow for the custom development of geoprocessing operations and toolsets. Python
can be used to access the geoprocessing, data management, and looping functionality needed to
process the PMP calculations for a basin. The gridded PMP analysis script has been added to an
ArcToolbox and can be run as a tool within the ArcGIS environment. The script has been

G - 7

imported and stored internally within the Gridded PMP Tool and all the parameters for the tool
have been set. The script can be accessed by exporting it from the tool to a ‘.py’ file. The Python
code can be opened and edited within any text editor. A hardcopy version of the code is given in
Appendix H.

The python script uses the arcpy, arcpy.analysis, arcpy.management, arcpy.conversion, numpy,
pandas, and matplotlib.pyplot modules. Python and these modules are included within the
ArcGIS for Desktop package. The script is designed to run as efficiently as possible with a
minimal amount of code and complexity. To achieve this, the script is organized into functions
that are called as needed. The primary PMP analysis calculations are calculated within the
pmpAnalysis() function which is called separately for each PMP storm type analyzed. Within the
broader pmpAnalysis() function, several smaller functions are called to perform various tasks:

createPMPfc() Creates the PMP_Points feature class to store vector (point) results
getAOIarea() Calculates the area of the input basin
dadLookup() Gets the DAD value for the current storm based on basin area or AOI

defined by the user
updatePMP() Records the largest adjusted rainfall value (PMP)
outputPMP() Produces output PMP GIS files and tables
basinAve() Calculates the basin average PMP
basinZone() Returns the transposition zone and side of Continental Divide of AOI for

the temporal distribution application
temporalDistLS() Local storm temporal distribution application
temporalDistGS() General storm temporal distribution application
temporalDistTS() Tropical storm temporal distribution application
temporalCritStaced() Critically stacked temporal distribution application
checkTemporal() Produces a table evaluating exceedance errors in temporally distributed

depths at intermediate durations

There is extensive documentation within the code in the form of ‘# comments’. These comments
provide guidance toward its functionality and describe the code.

While the script performs many actions, its primary purpose is to iterate through both the storm
list and the grid points within the drainage basin area of interest (AOI), comparing each, and
creating output based on the maximum values. To accomplish this, several layers of nested
iterative “for” loops are used.

The following high-level algorithm broadly describes the script process:
o Calculate Basin Area (in mi2)
o For each Storm Type (general, tropical, and local)

o For each duration
§ For each storm in database

• Lookup storm’s depth-area-duration (DAD) value for AOI size
• For each grid point in basin

o Calculate total adjusted rainfall (TAR) by multiplying
DAD value by total adjustment factor for the grid point

G - 8

o If TAR > PMP, the TAR becomes the new PMP value for
that grid point

o Create PMP point feature class for the storm type
o Create PMP raster GRID files for each duration
o Create basin/sub-basin average tables
o Create a depth-duration chart
o Apply temporal distributions
o Check temporal output for exceedance errors

1.6 Known Issues and Troubleshooting

The following guidelines may prevent issues with running the GIS tool.

• Ensure you version of ArcGIS Desktop is version 1.4 (or later) and maintenance is
current.

• Ensure all file and path names do not have spaces or non-alphanumeric symbols (e.g. #,
$, %). Underscores are acceptable and a good alternative to using spaces.

• Close any other applications or instances of ArcMap that may interfere with the current
session, files, or file paths that will be used by the tool.

• Ensure that the tool folder, output location, and AOI files are all stored locally and not
over a network location.

If the points above have been verified and issues persist, the user may try the following actions to
address the issue:

• Close out ArcMap session and all open ArcGIS applications and restart session.
• Restart computer. This may be required to completely clear any locks on files or

memory.
• Run the Repair Geometry tool on the AOI shapefile or feature class to correct any

geometry issues within the file.
• Rename AOI file. Change tool and/or output folder paths.

If issues persist it may be necessary to contact ESRI support or perform a clean ArcGIS
installation or upgrade

H - 1

Appendix H
GIS Tool Python Script

H - 2

''' ---
Name: Gridded PMP Tool Python Script

Script Version: 1.9

Python Version: 2.7

ArcGIS Version: ArcGIS Desktop 10.5.1

Author: Applied Weather Associates

Usage: The tool is designed to be executed within an ArcMap environment with an open MXD
session.

Description:
 This tool calculates PMP depths for a given drainage basin for the
specified durations. PMP point values are calculated (in inches) for each
grid point (spaced at 90 arc-second intervals) over the input polygon within
the project domain. The points are converted to gridded PMP datasets for
each duration.

---'''

import Python modules

import sys
import arcpy
import os
import traceback
from arcpy import env
import arcpy.analysis as an
import arcpy.management as dm
import arcpy.conversion as con
import numpy as np
import pandas as pd
from pandas import ExcelFile
import matplotlib.pyplot as plt

env.overwriteOutput = True # Set overwrite option
env.addOutputsToMap = False

get input parameters

basin = arcpy.GetParameter(0) # get AOI Basin
Shapefile
home = arcpy.GetParameterAsText(1) # get location of
'PMP' Project Folder
outLocation = arcpy.GetParameterAsText(2)
locDurations = arcpy.GetParameter(3) # get local storm
durations (string)
genDurations = arcpy.GetParameter(4) # get general
storm durations (string)
tropDurations = arcpy.GetParameter(5) # get tropical
storm durations (string)
weightedAve = arcpy.GetParameter(8) # get option to apply
weighted average (boolean)
#outputTable = arcpy.GetParameter(9) # get file path for
basin average summary table
includeSubbasin = arcpy.GetParameter(9) # get option add
subbasin averages (boolean)
subbasinIDfield = arcpy.GetParameterAsText(10) # Subbasin ID
field from AOI Basin Shapefile
ddChart = arcpy.GetParameter(11) # get option to create
depth-duration chart(boolean)
runTemporal = arcpy.GetParameter(12) # get option to run
temporal distributions (boolean)

H - 3

dadGDB = home + "\\Input\\DAD_Tables.gdb" # location of DAD
tables
adjFactGDB = home + "\\Input\\Storm_Adj_Factors.gdb" # location of
feature datasets containing total adjustment factors
arcpy.AddMessage("\nDAD Tables geodatabase path: " + dadGDB)
arcpy.AddMessage("Storm Adjustment Factor geodatabase path: " + adjFactGDB)

#mxd = arcpy.mapping.MapDocument("CURRENT")
#df = arcpy.mapping.ListDataFrames(mxd)[0]
basAveTables = [] # global list of
Basin Average Summary tables

def pmpAnalysis(aoiBasin, stormType, durList):

 ###
 ## Create PMP Point Feature Class from points within AOI basin and add fields
 def createPMPfc():

 arcpy.AddMessage("\nCreating feature class: 'PMP_Points' in Scratch.gdb...")
 dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")
make a feature layer of vector grid cells
 dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)
select the vector grid cells that intersect the aoiBasin polygon
 dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Grid_Points", "gpLayer")
make a feature layer of grid points
 dm.SelectLayerByLocation("gpLayer", "HAVE_THEIR_CENTER_IN", "vgLayer")
select the grid points within the vector grid selection
 con.FeatureClassToFeatureClass("gpLayer", env.scratchGDB, "PMP_Points")
save feature layer as "PMP_Points" feature class
 arcpy.AddMessage("(" + str(dm.GetCount("gpLayer")) + " grid points will be analyzed)\n")

 # Add PMP Fields
 for dur in durList:
 arcpy.AddMessage("\t...adding field: PMP_" + str(dur))
 dm.AddField(env.scratchGDB + "\\PMP_Points", "PMP_" + dur, "DOUBLE")

 # Add STORM Fields (this string values identifies the driving storm by SPAS ID number)
 for dur in durList:
 arcpy.AddMessage("\t...adding field: STORM_" + str(dur))
 dm.AddField(env.scratchGDB + "\\PMP_Points", "STORM_" + dur, "TEXT", "", "", 16,
"Storm ID " + dur + "-hour")

 # Add STNAME Fields (this string values identifies the driving storm by SPAS ID number)
 for dur in durList:
 arcpy.AddMessage("\t...adding field: STNAME_" + str(dur))
 dm.AddField(env.scratchGDB + "\\PMP_Points", "STNAME_" + dur, "TEXT", "", "", 50,
"Storm Name " + dur + "-hour")

 return

 ###
 ## Define getAOIarea() function:
 ## getAOIarea() calculates the area of AOI (basin outline) input shapefile/
 ## featureclass. The basin outline shapefile must be projected. The area
 ## is sqaure miles, converted from the basin layers projected units (feet
 ## or meters). The aoiBasin feature class should only have a single feature
 ## (the basin outline). If there are multiple features, the area will be stored
 ## for the final feature only.

 def getAOIarea():
 sr = arcpy.Describe(aoiBasin).SpatialReference #
Determine aoiBasin spatial reference system
 srname = sr.name
 srtype = sr.type
 srunitname = sr.linearUnitName #
Units
 arcpy.AddMessage("\nAOI basin spatial reference: " + srname + "\nUnit type: " +
srunitname + "\nSpatial reference type: " + srtype)

 aoiArea = 0.0
 rows = arcpy.SearchCursor(aoiBasin)

H - 4

 for row in rows:
 feat = row.getValue("Shape")
 aoiArea += feat.area
 if srtype == 'Geographic': # Must have a surface
projection. If one doesn't exist it projects a temporary file and uses that.
 arcpy.AddMessage("\n***The basin shapefile's spatial reference 'Geographic' is not
supported. Projecting temporary shapefile for AOI.***")
 arcpy.Project_management(aoiBasin,env.scratchGDB + "\\TempBasin",102039) #
Projects AOI Basin (102039 = USA_Contiguous_Albers_Equal_Area_Conic_USGS_version)
 TempBasin = env.scratchGDB + "\\TempBasin" # Path
to temporary basin created in scratch geodatabase
 sr = arcpy.Describe(TempBasin).SpatialReference # Determine
Spatial Reference of temporary basin
 aoiArea = 0.0
 rows = arcpy.SearchCursor(TempBasin) #
Assign area size in square meters
 for row in rows:
 feat = row.getValue("Shape")
 aoiArea += feat.area
 aoiArea = aoiArea * 0.000000386102 #
Converts square meters to square miles
 elif srtype == 'Projected':
 if srunitname == "Meter":
 aoiArea = aoiArea * 0.000000386102 #
Converts square meters to square miles
 elif srunitname == "Foot" or "Foot_US":
 aoiArea = aoiArea * 0.00000003587 #
Converts square feet to square miles
 else:
 arcpy.AddMessage("\nThe basin shapefile's unit type '" + srunitname + "' is not
supported.")
 sys.exit("Invalid linear units") #
Units must be meters or feet

 aoiArea = round(aoiArea, 3)
 arcpy.AddMessage("\nArea of interest: " + str(aoiArea) + " square miles.")

 if arcpy.GetParameter(6) == False:
 aoiArea = arcpy.GetParameter(7) #
Enable a constant area size
 aoiArea = round(aoiArea, 1)
 arcpy.AddMessage("\n***Area used for PMP analysis: " + str(aoiArea) + " sqmi***")
 return aoiArea

 ###
 ## Define dadLookup() function:
 ## The dadLookup() function determines the DAD value for the current storm
 ## and duration according to the basin area size. The DAD depth is interpolated
 ## linearly between the two nearest areal values within the DAD table.
 def dadLookup(stormLayer, duration, area): # dadLookup() accepts the current
storm layer name (string), the current duration (string), and AOI area size (float)
 #arcpy.AddMessage("\t\tfunction dadLookup() called.")
 durField = "H_" + duration # defines the name of the
duration field (eg., "H_06" for 6-hour)
 dadTable = dadGDB + "\\" + stormLayer
 rows = arcpy.SearchCursor(dadTable)

 try:
 row = rows.next() # Sets DAD area x1 to the
value in the first row of the DAD table.
 x1 = row.AREASQMI
 y1 = row.getValue(durField)
 xFlag = "FALSE" # xFlag will remain false for
basins that are larger than the largest DAD area.
 except RuntimeError: # return if duration does not
exist in DAD table
 return

 row = rows.next()
 i = 0

H - 5

 while row: # iterates through the DAD
table - assiging the bounding values directly above and below the basin area size
 i += 1
 if row.AREASQMI < area:
 x1 = row.AREASQMI
 y1 = row.getValue(durField)
 else:
 xFlag = "TRUE" # xFlag is switched to "TRUE"
indicating area is within DAD range
 x2 = row.AREASQMI
 y2 = row.getValue(durField)
 break

 row = rows.next()
 del row, rows, i

 if xFlag == "FALSE":
 x2 = area # If x2 is equal to the basin
area, this means that the largest DAD area is smaller than the basin and the resulting DAD value
must be extrapolated.
 arcpy.AddMessage("\t\tThe basin area size: " + str(area) + " sqmi is greater than the
largest DAD area: " + str(x1) + " sqmi.\n\t\tDAD value is estimated by extrapolation.")
 y = x1 / x2 * y1 # y (the DAD depth) is estimated
by extrapolating the DAD area to the basin area size.
 return y # The extrapolated DAD depth (in
inches) is returned.

 # arcpy.AddMessage("\nArea = " + str(area) + "\nx1 = " + str(x1) + "\nx2 = " + str(x2) +
"\ny1 = " + str(y1) + "\ny2 = " + str(y2))

 x = area # If the basin area size is
within the DAD table area range, the DAD depth is interpolated
 deltax = x2 - x1 # to determine the DAD value (y)
at area (x) based on next lower (x1) and next higher (x2) areas.
 deltay = y2 - y1
 diffx = x - x1

 y = y1 + diffx * deltay / deltax

 if x < x1:
 arcpy.AddMessage("\t\tThe basin area size: " + str(area) + " sqmi is less than the
smallest DAD table area: " + str(x1) + " sqmi.\n\t\tDAD value is estimated by extrapolation.")

 return y # The interpolated DAD depth (in
inches) is returned.

 ###
 ## Define updatePMP() function:
 ## This function updates the 'PMP_XX_' and 'STORM_XX' fields of the PMP_Points
 ## feature class with the largest value from all analyzed storms stored in the
 ## pmpValues list.
 def updatePMP(pmpValues, stormID, duration):
Accepts four arguments: pmpValues - largest adjusted rainfall for current duration (float
list); stormID - driver storm ID for each PMP value (text list); and duration (string)
pmpfield = "PMP_" + duration
stormfield = "STORM_" + duration
gridRows = arcpy.UpdateCursor(env.scratchGDB + "\\PMP_Points")
iterates through PMP_Points rows
i = 0
for row in gridRows:
row.setValue(pmpfield, pmpValues[i])
Sets the PMP field value equal to the Max Adj. Rainfall value (if larger than existing value).
row.setValue(stormfield, stormID[i])
Sets the storm ID field to indicate the driving storm event
gridRows.updateRow(row)
i += 1
del row, gridRows, pmpfield, stormfield
arcpy.AddMessage("\n\t" + duration + "-hour PMP values update complete. \n")
return

 pmpfield = "PMP_" + duration

H - 6

 stormfield = "STORM_" + duration
 stormTextField = "STNAME_" + duration

 gridRows = env.scratchGDB + "\\PMP_Points"
iterates through PMP_Points rows
 i = 0
 with arcpy.da.UpdateCursor(gridRows, (pmpfield, stormfield, stormTextField)) as cursor:
 for row in cursor:
 row[0] = pmpValues[i]
Sets the PMP field value equal to the Max Adj. Rainfall value (if larger than existing value).
 row[1] = stormID[i]
Sets the storm ID field to indicate the driving storm event
 if not stormID[i] == "STORM":
Conditional loop unless no controlling storm exists (ie, id of "STORM") to update table with
storm text
 if stormID[i].endswith("_loc") or stormID[i].endswith("_gen") or
stormID[i].endswith("_tro"): # remove hybrid storm suffixes
 stormNum = stormID[i][:-4]
 else:
 stormNum = stormID[i]
 whereClause = '"SPAS_ID"' + " = '" + stormNum + "'"
 stormList = home + "\\Input\\Non_Storm_Data.gdb\\Storm_List"
 sourceNameField = "STORM_TXT"
 stormText = arcpy.da.SearchCursor(stormList, (sourceNameField,),
whereClause).next()[0]
 row[2] = stormText
 del stormNum, sourceNameField, stormList, stormText
 cursor.updateRow(row)
 i += 1
 del row, gridRows, pmpfield, stormfield, stormTextField, i
 arcpy.AddMessage("\n\t" + duration + "-hour PMP values update complete. \n")
 return

 ###
 ## The outputPMP() function produces raster GRID files for each of the PMP durations.
 ## Aslo, a space-delimited PMP_Distribition.txt file is created in the 'Text_Output' folder.
 def outputPMP(type, area, outPath):
 desc = arcpy.Describe(basin)
 basinName = desc.baseName
 pmpPoints = env.scratchGDB + "\\PMP_Points" # Location of
'PMP_Points' feature class which will provide data for output

 outType = type[:1]
 outArea = str(int(round(area,0))) + "sqmi"
 outGDB = "PMP_"+ basinName + "_" + outArea +".gdb"
 if not arcpy.Exists(outPath + "\\" + outGDB): # Check to see if
PMP_XXXXX.gdb already exists
 arcpy.AddMessage("\nCreating output geodatabase '" + outGDB + "'")
 dm.CreateFileGDB(outPath, outGDB)
 arcpy.AddMessage("\nCopying PMP_Points feature class to " + outGDB + "...")
 con.FeatureClassToFeatureClass(pmpPoints, outPath + "\\" + outGDB, type + "_PMP_Points_"
+ basinName + "_" + outArea)
 pointFC = outPath + "\\" + outGDB + "\\" + type + "_PMP_Points_" + basinName + "_" +
outArea
 # addLayerMXD(pointFC) # calls addLayerMDX function to add output to ArcMap session

 arcpy.AddMessage("\nBeginning PMP Raster Creation...")

 for dur in durList: # This code
creates a raster GRID from the current PMP point layer
 durField = "PMP_" + dur
 outLoc = outPath + outGDB +"\\" + outType + "_" + dur + "_" + basinName + "_" +
outArea
 arcpy.AddMessage("\n\tInput Path: " + pmpPoints)
 arcpy.AddMessage("\tOutput raster path: " + outLoc)
 arcpy.AddMessage("\tField name: " + durField)
 con.FeatureToRaster(pmpPoints, durField, outLoc, "0.025")
 arcpy.AddMessage("\tOutput raster created...")
 del durField, outLoc, dur

 arcpy.AddMessage("\nPMP Raster Creation complete.")

H - 7

 if includeSubbasin: # Begin subbasin
average calculations
 subbasinID = []
 with arcpy.da.SearchCursor(basin, subbasinIDfield) as cursor: # Create list of
subbasin ID names
 for row in cursor:
 subbasinID.append(row[0])

 subIDtype = arcpy.ListFields(basin, subbasinIDfield)[0].type # Define the datatype
of the subbasin ID field

 if subIDtype != "String": # Convert subbasin
IDs to a string, if they are not already
 subbasinID = [str(i) for i in subbasinID]

 subNameLen = max(map(len, subbasinID)) # Define the length
of the longest subbasin ID

 # arcpy.AddMessage("\nList of subbasins...\n" + "\n".join(subbasinID))

 arcpy.AddMessage("\nCreating Subbasin Summary Table...")
 tableName = type + "_PMP_Subbasin_Average" + "_" + outArea
 tablePath = outPath + "\\" + outGDB + "\\" + tableName
 dm.CreateTable(outPath + "\\" + outGDB, tableName) # Create blank table

 dm.AddField(tablePath, "STORM_TYPE", "TEXT", "", "", 10, "Storm Type") #
Create "Storm Type" field
 dm.AddField(tablePath, "SUBBASIN", "TEXT", "", "", subNameLen, "Subbasin") #
Create "Subbasin" field

 cursor = arcpy.da.InsertCursor(tablePath, "SUBBASIN") # Create Insert
cursor and add a blank row to the table for each subbasin
 for sub in subbasinID:
 cursor.insertRow([sub])
 del cursor, sub

 dm.CalculateField(tablePath, "STORM_TYPE", "'" + type + "'", "PYTHON_9.3") #
populate storm type field

 i = 0
 for field in arcpy.ListFields(pmpPoints, "PMP_*"): # Add fields for each
PMP duration and calculate the subbasin averages
 fieldName = field.name
 arcpy.AddMessage("\n\tCalculating subbasin average for " + fieldName + "
(weighted)...\n")
 dm.AddField(tablePath, fieldName, "DOUBLE", "", 2) # Add duration field
 subAveList = []
 for subbasin in subbasinID: # Loop through each
subbasin
 if subIDtype != "String": # Define an SQL
expression that specifies the current subbasin
 sql_exp = """{0} = {1}""".format(arcpy.AddFieldDelimiters(basin,
subbasinIDfield), subbasin)
 else:
 sql_exp = """{0} = '{1}'""".format(arcpy.AddFieldDelimiters(basin,
subbasinIDfield), subbasin)
 dm.MakeFeatureLayer(basin, "subbasinLayer", sql_exp)
 outLayer = outPath + "\\" + outGDB + "\\subbasin_" + str(subbasin)
 subBasAve = basinAve("subbasinLayer", fieldName) # Call the basAve()
function passing the subbasin and duration field
 arcpy.AddMessage("\tSubbasin average for " + str(subbasin) + ": " +
str(subBasAve) + '"')
 subAveList.append(subBasAve) # Add subbasin
average to list
 p = 0
 with arcpy.da.UpdateCursor(tablePath, fieldName) as cursor: # Update the subbasin
average summary table with the subbasin averages
 for row in cursor:
 row = subAveList[p]
 cursor.updateRow([row])

H - 8

 p += 1

 ## dm.CalculateField(tablePath, fieldName, fieldAve, "PYTHON_9.3") # Assigns
the basin average
 ## dur = durList[i] #
following lines add alias field names to basin average table (ArcGIS 10.2.1 or later)
 ## if dur[0] == "0":
 ## dur = dur[1:]
 ## fieldAlias = dur + "-hour PMP"
 ## dm.AlterField(tablePath, fieldName, "#", fieldAlias)
 i += 1
 arcpy.AddMessage("\nSubbasin summary table complete.")

 arcpy.AddMessage("\nCreating Basin Summary Table...")
 tableName = type + "_PMP_Basin_Average" + "_" + outArea
 tablePath = outPath + "\\" + outGDB + "\\" + tableName
 dm.CreateTable(outPath + "\\" + outGDB, tableName) # Create blank table
 cursor = arcpy.da.InsertCursor(tablePath, "*") # Create Insert cursor and
add a blank row to the table
 cursor.insertRow([0])
 del cursor

 dm.AddField(tablePath, "STORM_TYPE", "TEXT", "", "", 30, "Storm Type") # Create
"Storm Type" field
 dm.CalculateField(tablePath, "STORM_TYPE", "'" + type + "'", "PYTHON_9.3") #
populate storm type field

 i = 0
 for field in arcpy.ListFields(pmpPoints, "PMP_*"): # Add fields for each PMP
duration and calculate the basin average
 fieldName = field.name
 fieldAve = basinAve(basin, fieldName) # Calls the basinAve()
function - returns the average (weighted or not)
 dm.AddField(tablePath, fieldName, "DOUBLE", "", 2) # Add duration field
 dm.CalculateField(tablePath, fieldName, fieldAve, "PYTHON_9.3") # Assigns the
basin average
dur = durList[i] # following lines add alias
field names to basin average table (ArcGIS 10.2.1 or later)
if dur[0] == "0":
dur = dur[1:]
fieldAlias = dur + "-hour PMP"
dm.AlterField(tablePath, fieldName, "#", fieldAlias)
 i += 1
 arcpy.AddMessage("\nSummary table complete.")
 basAveTables.append(tablePath)

The following lines export a .png image depth duration chart and PMP summary excel
file to the output folder
 if ddChart:
 xValues = durList #Get list of durations for chart
 xValues = [int(i) for i in xValues] #Convert duration list to integers
 ax1 = plt.subplot2grid((1,1), (0,0)) #Create variable for subplot in chart
 yValues = []
 pmpFields = [field.name for field in arcpy.ListFields(tablePath, "PMP_*")] # Selects
PMP fields for yValues
 with arcpy.da.SearchCursor(tablePath, pmpFields) as cursor: # Adds PMP
depths to yValues
 yValues = next(cursor)
 del cursor, pmpFields

 stormFields = [field.name for field in arcpy.ListFields(pmpPoints, "Storm_*")] #
Selects Controlling Storm fields
 contStorms = [] # List of controlling storms for a single
duration
 listOfContStorms = [] # List of controlling storms for all
durations (list of lists)
 i = 0 # iterator (for "Storm_*" fields)
 while i < len(stormFields): # iterates through controlling storm
fields
 with arcpy.da.SearchCursor(pmpPoints, stormFields) as cursor: # Search cursor
returns list of unique controlling storms

H - 9

 contStorms = sorted({row[i] for row in cursor})
 listOfContStorms.append(contStorms) # Add unique storms
for current duration to list of controlling stomrs
 i += 1
 del cursor

 plt.plot(xValues,yValues) #Creates chart
 plt.xlabel('Storm Duration in Hours')
 plt.ylabel('Rainfall Depth in Inches')
 plt.title(basinName + " (" + outArea + ") " + type + ' Storm Basin Average PMP\nDepth
Duration Chart')
 ax1.grid(True) #Creates grid lines in chart
 yTop = max(yValues) + 1
 ax1.set_ylim(top = yTop) #Sets y axis values to match depths +1 1
 ax1.set_xticks(xValues) #Sets x axis values to match durations
i = 0
xy = zip(xValues, yValues)
while i < len(stormFields): # iterates through controlling
storm fields
pointXY = xy[i]
yLabel = '{0:.1f}'.format(yValues[i]) # round PMP depth to 1 decimal and
convert to string
stormLabel = str(listOfContStorms[i]) # convert controlling storm ID(s)
to string
stormLabel = stormLabel.replace("u", "") # remove unicode "u"
stormLabel = stormLabel.replace("'", "") # remove unicode ","
stormLabel = stormLabel.replace("[", "") # remove unicode "["
stormLabel = stormLabel.replace("]", "") # remove unicode "]"
#ax1.annotate(yLabel + '"\n' + stormLabel, xy=xy[i], textcoords='offset
points', size=8, annotation_clip=True)
ax1.annotate(yLabel + '"\n' + stormLabel, xy=xy[i], textcoords='data', size=8,
annotation_clip=True)
i += 1
del xy

 plt.savefig(outPath + "\\" + basinName + "_" + type + "_Depth_Duration_Chart.png")
 #Save image
 plt.close() #Close chart to remove from memory
 arcpy.AddMessage("\nDepth Duration Chart exported to output folder.")
 del xValues, yValues, #df, dfLimited
 return
 return

 ###
 ## The basin() returns the basin average PMP value for a given duration field.
 ## If the option for a weighted average is checked in the tool parameter the script
 ## will weight the grid point values based on proportion of area inside the basin.
 def basinAve(aoiBasin, pmpField):
 pmpPoints = env.scratchGDB + "\\PMP_Points"
Path of 'PMP_Points' scratch feature class
 if weightedAve:
 #arcpy.AddMessage("\tCalculating sub-basin average for " + pmpField +
"(weighted)...")
 vectorGridClip = env.scratchGDB + "\\VectorGridClip"
Path of 'VectorGridClip' scratch feature class

 dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")
make a feature layer of vector grid cells
 dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)
select the vector grid cells that intersect the aoiBasin polygon

 an.Clip("vgLayer", aoiBasin, vectorGridClip)
clips aoi vector grid to basin
 dm.AddField(pmpPoints, "WEIGHT", "DOUBLE")
adds 'WEIGHT' field to PMP_Points scratch feature class
 dm.MakeFeatureLayer(vectorGridClip, "vgClipLayer")
make a feature layer of basin clipped vector grid cells
 dm.MakeFeatureLayer(pmpPoints, "pmpPointsLayer")
make a feature layer of PMP_Points feature class

H - 10

 dm.AddJoin("pmpPointsLayer", "ID", "vgClipLayer", "ID")
joins PMP_Points and vectorGridBasin tables
 dm.CalculateField("pmpPointsLayer", "WEIGHT", "!vectorGridClip.Shape_Area!",
"PYTHON_9.3") # Calculates basin area proportion to use as weight for each grid cell.
 dm.RemoveJoin("pmpPointsLayer", "vectorGridClip")

 dm.SelectLayerByLocation("pmpPointsLayer", "INTERSECT", "vgLayer")

 na = arcpy.da.TableToNumPyArray("pmpPointsLayer",(pmpField, 'WEIGHT'))
Assign pmpPoints values and weights to Numpy array (na)
 wgtAve = np.average(na[pmpField], weights=na['WEIGHT'])
Calculate weighted average with Numpy average
 del na
 return round(wgtAve, 2)

 else:
 if includeSubbasin:
 #arcpy.AddMessage("\tCalculating sub-basin average for " + pmpField + "(non-
weighted)...")
 vectorGridClip = env.scratchGDB + "\\VectorGridClip"
Path of 'VectorGridClip' scratch feature class

 dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")
make a feature layer of vector grid cells
 dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)
select the vector grid cells that intersect the aoiBasin polygon

 dm.MakeFeatureLayer(pmpPoints, "pmpPointsLayer")
make a feature layer of PMP_Points feature class

 dm.SelectLayerByLocation("pmpPointsLayer", "INTERSECT", "vgLayer")

 na = arcpy.da.TableToNumPyArray("pmpPointsLayer", pmpField)
Assign pmpPoints values and weights to Numpy array (na)
 fieldAve = np.average(na[pmpField])
Calculates aritmetic mean
 del na
 return round(fieldAve, 2)

 else:
 arcpy.AddMessage("\tCalculating basin average for " + pmpField + "(not
weighted)...")
 na = arcpy.da.TableToNumPyArray(pmpPoints, pmpField)
Assign pmpPoints values to Numpy array (na)
 fieldAve = np.average(na[pmpField])
Calculates aritmetic mean
 del na
 return round(fieldAve, 2)

 ###
 ## This basinZone() function returns a list containing transposition zone ID
 ## (as an integer) and side of continental divide of the the basin centroid
 ## (as text "East" or "West")
 def basinZone(bas): ## This function returns the transposition zone and side of
continental divide of the the basin centroid
 tempBasin = env.scratchGDB + "\\tempBasin"
 tempCentroid = env.scratchGDB + "\\tempCentroid"
 joinFeat = home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid"
 joinOutput = env.scratchGDB + "\\joinOut"
 dm.Dissolve(bas, tempBasin)
 desc = arcpy.Describe(tempBasin)
 sr = desc.spatialReference
 #dm.FeatureToPoint(tempBasin, tempCentroid, "INSIDE")

 dm.CreateFeatureclass(env.scratchGDB,"tempCentroid","POINT",spatial_reference = sr)
 with arcpy.da.InsertCursor(tempCentroid, "SHAPE@XY") as iCur:
 with arcpy.da.SearchCursor(tempBasin,"SHAPE@") as sCur:
 for sRow in sCur:
 cent = sRow[0].centroid # get the centroid
 iCur.insertRow([(cent.X,cent.Y)])# write it to the new feature class

H - 11

 an.SpatialJoin(tempCentroid, joinFeat, joinOutput)
 centZone = arcpy.da.SearchCursor(joinOutput, ("TRANS_ZONE",)).next()[0]
 centDivide = arcpy.da.SearchCursor(joinOutput, ("DIVIDE",)).next()[0]
 del tempBasin, tempCentroid, joinFeat, joinOutput, desc, sr
 return (centZone, centDivide)

 ##
 ## This portion of the code checks to make sure none of the temporal distributions
 ## are exceeding the PMP values for any durations. It adds a table to the output
 ## folder called CheckTemporal.

##~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
    def checkTemporal(stormType, outPath, TemporalTable, distributionFields, dur, areaSize): 
        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                
# Location of basin average PMP table 
        pmpFields = [field.name for field in arcpy.ListFields(basinPMP, "PMP_*")]                               
# PMP duration run 
         
        pmp = []                                                                                                
#Creates empty list and updates with PMP values for each duration run 
        i = 0 
        while i < len(pmpFields): 
            with arcpy.da.SearchCursor(basinPMP,pmpFields) as cursor: 
                for row in cursor: 
                    pmp.append(row[i]) 
                    i += 1 
        del i, cursor 
 
        checkTable = arcpy.CreateTable_management(outPath, "CheckTemporal_" + dur + "hr")                       
#Creates table in output folder, adds field, and populates field with distributions 
        dm.AddField(checkTable, "PATTERN", "TEXT", "", "", 50) 
        with arcpy.da.InsertCursor(checkTable, "PATTERN") as cursor: 
            for val in distributionFields: 
                cursor.insertRow([val]) 
 
        maxFields = []                                                                                          
#Create Max fields for each duration 
        for maxField in pmpFields: 
            newField = maxField.replace("PMP","MAX") 
            maxFields.append(newField) 
        del newField 
 
        checkFields = []                                                                                        
#Create Check fields for each duration 
        for checkField in pmpFields: 
            newField = checkField.replace("PMP","CHECK") 
            checkFields.append(newField) 
        del newField 
 
        i = 0                                                                                                   
#Populate fields 
        for pmpField in pmpFields: 
            dm.AddField(checkTable, pmpField, "DOUBLE", "", "", 50) 
            dm.AddField(checkTable, maxFields[i], "DOUBLE", "", "", 50) 
            dm.AddField(checkTable, checkFields[i], "TEXT", "", "", 50) 
            with arcpy.da.UpdateCursor(checkTable, pmpField) as cursor: 
                for row in cursor: 
                    row = pmp[i] 
                    cursor.updateRow([row]) 
                i += 1 
        del i, cursor 
 
        dic = {"01": 4, "02": 8, "03": 12, "04": 16, "05": 20, "06": 24, "12": 48, "24": 96, 
"48": 192, "72": 288, "96": 384, "120": 480}  # Dictionary to convert durations into 15-minute 
timesteps 
 
        i = 0                                                                                                       
# Calculates incremental PMP depths from temporal distribution and gets maximum rainfall for each 
duration run 



 

H - 12 
 

        for dur in durList: 
            k = dic[dur] 
            maxpmpList = [] 
            p = 0 
            for distribution in distributionFields: 
                incPMP = [] 
                previousRow = 0 
                with arcpy.da.SearchCursor(TemporalTable, distributionFields) as cursor: 
                    for row in cursor: 
                        increment = row[p] - previousRow 
                        previousRow = row[p] 
                        incPMP.append(increment) 
                na = np.array(incPMP) 
                sumList = np.convolve(na,np.ones(k)) 
                maxPMP = max(sumList) 
                maxpmpList.append(maxPMP) 
                p +=1 
            x = 0 
            with arcpy.da.UpdateCursor(checkTable, maxFields[i]) as cursor:                                         
# Updates table with max values 
                for row in cursor: 
                    row = maxpmpList[x] 
                    x += 1 
                    cursor.updateRow([row]) 
            i += 1 
        del i, k, cursor, x 
 
        with arcpy.da.UpdateCursor(checkTable, '*') as cursor:                                                      
# Compares PMP values to max values for each duration.  If PMP values are larger update check 
field with PASS if not FAIL 
            for row in cursor: 
                rec = dict(zip(cursor.fields, row)) 
                arcpy.AddMessage("\n\tChecking values for distribution....." + rec['PATTERN']) 
                for k, v in rec.iteritems(): 
                    if not k.startswith('PMP_'): 
                        continue 
                    _, n = k.split('_') 
                    mx = rec['MAX_{}'.format(n)] 
                    rec['CHECK_{}'.format(n)] = 'FAIL' if v < mx else 'PASS' 
                    if rec['CHECK_{}'.format(n)] == 'PASS': 
                        arcpy.AddMessage(str(k) + " \n\tPMP value is... " + str(v) + "  \n\tmax 
rainfall value is..." + str(mx) + "\n\tThis distribution.... " + rec['CHECK_{}'.format(n)]) 
                    else: 
                        arcpy.AddMessage(str(k) + " \n\tPMP value is... " + str(v) + "  \n\tmax 
rainfall value is..." + str(mx) + "\n\tThis distribution.... " + rec['CHECK_{}'.format(n)]+ "\n\t 
Do not use this distribution.  Max values for duration are exceeding PMP values.  Use critically 
stacked distribution.... ") 
                cursor.updateRow([rec[k] for k in cursor.fields]) 
        del cursor, k, v, rec 
        return 
     
    ###########################################################################         
    ##  The temporalDistLS() function applies the temporal distributions scenarios 
    ##  to local storm PMP 
    def temporalDistLS(stormType, outPath, areaSize):      
         # Local Storm Temporal Distributions Application Function 
 basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                
# Location of basin average PMP table 
 
        arcpy.AddMessage("\n***Local Storm - 2-hour PMP Temporal Distributions***") 
 
        temporalDistTable = home + "\\Input\\Non_Storm_Data.gdb\\LS_Temporal_Distributions_2hr"           
# LS 2hr Temporal distribution factors tables 
        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, 
"LS_2_*")]  # Create a list of 2-hour distribution field names 
        outTable = outPath + "\\LS_Temporal_Distributions_2hr" 
        arcpy.AddMessage("\n\tCreating 2-hour temporal distribution table:...") 
        dm.Copy(temporalDistTable, outTable)                
# Copy 2-hour temporal dist. factors table to output location 
        largestHour = arcpy.da.SearchCursor(basinPMP, ("PMP_01",)).next()[0]    
  # Calculate largest hour PMP 



 

H - 13 
 

        secondLargestHour = arcpy.da.SearchCursor(basinPMP, ("PMP_02",)).next()[0] - largestHour 
 # Calculate 2nd-largest hour PMP 
        arcpy.AddMessage("\n\tLargest Hour: " + str(largestHour)) 
        arcpy.AddMessage("\tSecond Largest Hour: " + str(secondLargestHour)) 
        for distribution in distributionList:       
  # Loops thourgh each 2-hour temporal distribution 
            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 
            arcpy.AddMessage("\t\tFirst hour...") 
            with arcpy.da.UpdateCursor(outTable, distribution) as cursor:    
 # Cursor to apply temporal factor to 1-hour PMP  
                for row in cursor: 
                    if not row[0]: 
                        #arcpy.AddMessage("\tLeaving loop...") 
                        break 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(row[0] * 
largestHour,3))) 
                    row[0] = round(row[0] * largestHour,3) 
                    cursor.updateRow(row) 
                del row, cursor 
            arcpy.AddMessage("\t\tSecond hour...") 
            accumPMP = largestHour 
            whereClause = distribution + " IS NULL" 
            with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:  
  # Cursor to evenly distribute 2nd largest hour 
                for row in cursor: 
                    accumPMP += secondLargestHour / 12 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 
                    row[0] = round(accumPMP, 3) 
                    cursor.updateRow(row) 
                del row, cursor, accumPMP, whereClause 
        del distribution, distributionList, largestHour, secondLargestHour 
         
        arcpy.AddMessage("\n***Local Storm - 6-hour PMP Temporal Distributions***") 
 
        temporalDistTable = home + "\\Input\\Non_Storm_Data.gdb\\LS_Temporal_Distributions_6hr"           
# LS 6hr Temporal distribution factors table 
        outTable = outPath + "\\LS_Temporal_Distributions_6hr"   
        arcpy.AddMessage("\n\tCreating temporal distribution table:...") 
        dm.Copy(temporalDistTable, outTable)                
# Copy 6-hour temporal dist. factors table to output location 
        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, 
"LS_6_*")]  # Create a list of 6-hour distribution field names 
        arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 
        sixHour = arcpy.da.SearchCursor(basinPMP, ("PMP_06",)).next()[0]    
 # Gets 6-hour PMP depth 
        for distribution in distributionList:       
  # Loops thourgh each 6-hour temporal distribution 
            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 
            with arcpy.da.UpdateCursor(outTable, distribution) as cursor:    
 # Cursor to apply temporal factor to 6-hour PMP 
                for row in cursor: 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(row[0] * sixHour, 3))) 
                    row[0] = round(row[0] * sixHour, 3) 
                    cursor.updateRow(row) 
                del row, cursor 
 
        #location[0] == 1 or location[0] == 2 or location[0] == 3 or location[0] == 12 or 
location[0] == 13: # condition if basin centroid is in one of the Hybrid zones 
        arcpy.AddMessage("\n***Local Storm - 24-hour Hybrid PMP Temporal Distributions***") 
 
        temporalDistTable = home + 
"\\Input\\Non_Storm_Data.gdb\\Hybrid_Temporal_Distributions_24hr"         # 24-hour Temporal 
distribution factors table 
        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, 
"LS_24_*")]         # Create a list of 24-hour distribution field names 
        arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 
        outTable = outPath + "\\Hybrid_Temporal_Distributions_24hr" 
        arcpy.AddMessage("\n\tCreating temporal distribution table:...") 
        dm.Copy(temporalDistTable, outTable)                
# Copy 24-hour temporal dist. factors table to output location 



 

H - 14 
 

        twentyfourHour = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]   
         # Gets 24-hour PMP depth 
        for distribution in distributionList:       
         # Loops thourgh each 24-hour temporal distribution 
            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 
            with arcpy.da.UpdateCursor(outTable, distribution) as cursor:    
 # Cursor to apply temporal factor to 24-hour PMP 
                for row in cursor: 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(row[0] * twentyfourHour, 
3))) 
                    row[0] = round(row[0] * twentyfourHour, 3) 
                    cursor.updateRow(row) 
                del row, cursor 
        distType = "24hr_Hybrid" 
        checkTemporal(stormType, outPath, outTable, distributionList, distType, areaSize) 
        del basinPMP, distribution, distributionList, outTable, temporalDistTable 
        return 
  
    ###########################################################################         
    ##  The temporalDistGS() function applies the temporal distributions scenarios 
    ##  to general or tropical storm PMP based on the basin location.  The function 
    ## accepts the storm type as the first argument, the basin average table location 
    ##  as the second argument 
    def temporalDistGS(stormType, outPath, areaSize):      
         # General Storm Temporal Distributions Application Function 
 basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                
# Location of basin average PMP table 
 
        arcpy.AddMessage("\n***" + stormType + " Storm - PMP Temporal Distributions***") 
 
        temporalDistTable = home + "\\Input\\Non_Storm_Data.gdb\\GS_Temporal_Distributions"            
         # General Storm Temporal distribution factors table 
        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, "GS*")] 
  # Create a list of 24-hour distribution field names 
        arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList))  
        outTable = outPath + "\\GS_Temporal_Distributions"  
 
        arcpy.AddMessage("\n\tCreating temporal distribution table:...") 
        dm.Copy(temporalDistTable, outTable)        
 # Copy temporal dist. factors table to output location 
         
        largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]    
            # 
Calculate largest 24-hour period PMP 
        second24 = arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24  
         # Calculate 2nd-largest 24-hour period PMP 
        third24 = arcpy.da.SearchCursor(basinPMP, ("PMP_72",)).next()[0] - 
arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] # Calculate 3rd-largest 24-hour 
period PMP 
          
        arcpy.AddMessage("\n\tLargest 24-hour: " + str(largest24)) 
        arcpy.AddMessage("\tSecond largest 24-hour: " + str(second24)) 
        arcpy.AddMessage("\tThird largest 24-hour: " + str(third24)) 
         
        for distribution in distributionList:       
  # Loops thourgh each 24-hour temporal distribution 
            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 
            arcpy.AddMessage("\t\tFirst 24-hour Period...") 
            accumPMP = 0 
            with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:  
  # Cursor to evenly distribute 2nd largest hour 
                for row in cursor: 
                    if row[1] <= 96:         
 # Leave loop once a row containing a temporal dist. factor (ie, second 24h period) is 
reached 
                        accumPMP +=  second24 / 96 
                        #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 
                        row[0] = round(accumPMP, 3) 
                        cursor.updateRow(row) 
                del row, cursor 
 



 

H - 15 
 

            arcpy.AddMessage("\t\tSecond 24-hour Period...") 
            with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:  
  # Cursor to apply temporal factors to largest 24-hour PMP 
                for row in cursor: 
                    if row[1] > 96 and row[1] <= 192:      
  # Constrain update to rows 97-192 (second 24hr period) 
                        accumPMP = round((largest24 * row[0]) + second24, 3) 
                        #arcpy.AddMessage("\tAccumulated Rain: " + str(accumPMP)) 
                        row[0] = accumPMP 
                        cursor.updateRow(row) 
                del row, cursor 
                     
            arcpy.AddMessage("\t\tThird 24-hour Period...") 
            whereClause = distribution + " IS NULL" 
            with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:  
  # Cursor to evenly distribute 3nd largest hour over remaining empty rows 
                for row in cursor: 
                    accumPMP +=  third24 / 96 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 
                    row[0] = round(accumPMP, 3) 
                    cursor.updateRow(row) 
                del row, cursor, accumPMP, whereClause 
            #arcpy.AddMessage("\nCompleted temporal distribution for: " + distribution) 
                 
        distType = "24hr_GS" 
        checkTemporal(stormType, outPath, outTable, distributionList, distType, areaSize) 
        del stormType, basinPMP 
        return 
     
    ###########################################################################         
    ##  The temporalDistTS() function applies the temporal distributions scenarios 
    ##  to general or tropical storm PMP based on the basin location.  The function 
    ## accepts the storm type as the first argument, the basin average table location 
    ##  as the second argument 
    def temporalDistTS(stormType, outPath, areaSize):      
         # Tropical Storm Temporal Distributions Application Function 
 basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                
# Location of basin average PMP table 
 
        arcpy.AddMessage("\n***" + stormType + " Storm - PMP Temporal Distributions***") 
 
        temporalDistTable = home + "\\Input\\Non_Storm_Data.gdb\\TS_Temporal_Distributions"             
 # Tropical Storm Temporal distribution factors table 
        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, "TS*")] 
  # Create a list of 24-hour distribution field names 
        arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList))   
        outTable = outPath + "\\TS_Temporal_Distributions" 
        arcpy.AddMessage("\n\tCreating temporal distribution table:...") 
        dm.Copy(temporalDistTable, outTable)        
 # Copy temporal dist. factors table to output location 
         
        largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]    
            # 
Calculate largest 24-hour period PMP 
        second24 = arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24  
         # Calculate 2nd-largest 24-hour period PMP 
        third24 = arcpy.da.SearchCursor(basinPMP, ("PMP_72",)).next()[0] - 
arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] # Calculate 3rd-largest 24-hour 
period PMP 
           
        arcpy.AddMessage("\n\tLargest 24-hour: " + str(largest24)) 
        arcpy.AddMessage("\tSecond largest 24-hour: " + str(second24)) 
        arcpy.AddMessage("\tThird largest 24-hour: " + str(third24)) 
         
        for distribution in distributionList:       
  # Loops thourgh each 24-hour temporal distribution 
            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 
            arcpy.AddMessage("\t\tFirst 24-hour Period...") 
            accumPMP = 0 
            with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:  
  # Cursor to evenly distribute 2nd largest hour 



 

H - 16 
 

                for row in cursor: 
                    if row[1] <= 96:         
 # Leave loop once a row containing a temporal dist. factor (ie, second 24h period) is 
reached 
                        accumPMP +=  second24 / 96 
                        #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 
                        row[0] = round(accumPMP, 3) 
                        cursor.updateRow(row) 
                del row, cursor 
 
            arcpy.AddMessage("\t\tSecond 24-hour Period...") 
            with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:  
  # Cursor to apply temporal factors to largest 24-hour PMP 
                for row in cursor: 
                    if row[1] > 96 and row[1] <= 192:      
  # Constrain update to rows 97-192 (second 24hr period) 
                        accumPMP = round((largest24 * row[0]) + second24, 3) 
                        #arcpy.AddMessage("\tAccumulated Rain: " + str(accumPMP)) 
                        row[0] = accumPMP 
                        cursor.updateRow(row) 
                del row, cursor 
                     
            arcpy.AddMessage("\t\tThird 24-hour Period...") 
            whereClause = distribution + " IS NULL" 
            with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:  
  # Cursor to evenly distribute 3nd largest hour over remaining empty rows 
                for row in cursor: 
                    accumPMP +=  third24 / 96 
                    #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 
                    row[0] = round(accumPMP, 3) 
                    cursor.updateRow(row) 
                del row, cursor, accumPMP, whereClause 
            #arcpy.AddMessage("\nCompleted temporal distribution for: " + distribution) 
                 
        distType = "24hr_TS" 
        checkTemporal(stormType, outPath, outTable, distributionList, distType, areaSize)         
        del stormType, basinPMP 
        return 
  
    ########################################################################### 
    ##  This portion of the code iterates through each storm feature class in the 
    ##  'Storm_Adj_Factors' geodatabase (evaluating the feature class only within 
    ##  the Local, Tropical, or general feature dataset).  For each duration, 
    ##  at each grid point within the aoi basin, the transpositionality is 
    ##  confirmed.  Then the DAD precip depth is retrieved and applied to the 
    ##  total adjustement factor to yield the total adjusted rainfall.  This 
    ##  value is then sent to the updatePMP() function to update the 'PMP_Points' 
    ##  feature class. 
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##    

 desc = arcpy.Describe(basin) # Check
to ensure AOI input shape is a Polygon. If not - exit.
 basinShape = desc.shapeType
 if desc.shapeType == "Polygon":
 arcpy.AddMessage("\nBasin shape type: " + desc.shapeType)
 else:
 arcpy.AddMessage("\nBasin shape type: " + desc.shapeType)
 arcpy.AddMessage("\nError: Input shapefile must be a polygon!\n")
 sys.exit()

 createPMPfc() # Call
the createPMPfc() function to create the PMP_Points feature class.

 env.workspace = adjFactGDB # the
workspace environment is set to the 'Storm_Adj_Factors' file geodatabase

 aoiSQMI = round(getAOIarea(),2) # Calls
the getAOIarea() function to assign area of AOI shapefile to 'aoiSQMI'
 if aoiSQMI > 100 and stormType is "Local":

H - 17

 arcpy.AddMessage("\n***Warning - Local storm PMP depths only valid for basins 100 square
miles or smaller***")

 stormList = arcpy.ListFeatureClasses("", "Point", stormType) # List
all the total adjustment factor feature classes within the storm type feature dataset.
 for dur in durList:

arcpy.AddMessage("\n***\nEvaluating " +
dur + "-hour duration...")

 pmpList = []
 driverList = []
 gridRows = arcpy.SearchCursor(env.scratchGDB + "\\PMP_Points")
 try:
 for row in gridRows:
 pmpList.append(0.0) #
creates pmpList of empty float values for each grid point to store final PMP values
 driverList.append("STORM") #
creates driverList of empty text values for each grid point to store final Driver Storm IDs
 del row, gridRows
 except UnboundLocalError:
 arcpy.AddMessage("\n***Error: No data present within basin/AOI area.***\n")
 sys.exit()

 for storm in stormList[:]:
 arcpy.AddMessage("\n\tEvaluating storm: " + storm + "...")
 dm.MakeFeatureLayer(storm, "stormLayer") # creates
a feature layer for the current storm
 dm.SelectLayerByLocation("stormLayer", "HAVE_THEIR_CENTER_IN", "vgLayer") #
examines only the grid points that lie within the AOI
 gridRows = arcpy.SearchCursor("stormLayer")
 pmpField = "PMP_" + dur
 i = 0
 try:
 dadPrecip = round(dadLookup(storm, dur, aoiSQMI),3)
 arcpy.AddMessage("\t\t" + dur + "-hour DAD value: " + str(dadPrecip) + chr(34))
 except TypeError: # In no
duration exists in the DAD table - move to the next storm
 arcpy.AddMessage("\t***Duration '" + str(dur) + "-hour' is not present for " +
str(storm) + ".***\n")
 continue
 arcpy.AddMessage("\t\tComparing " + storm + " adjusted rainfall values against
current driver values...")
 transCounter = 0 # Counter for
number of grid points transposed to
 for row in gridRows:
 if row.TRANS == 1: # Only continue
if grid point is transpositionable ('1' is transpostionable, '0' is not).
 try: # get total adj.
factor if duration exists
 transCounter += 1
 adjRain = round(dadPrecip * row.TAF,1)
 if adjRain > pmpList[i]:
 pmpList[i] = adjRain
 driverList[i] = storm
 except RuntimeError:
 arcpy.AddMessage("\t\t *Warning* Total Adjusted Raifnall value falied
to set for row " + str(row.CNT))
 break
 del adjRain
 i += 1
 if transCounter == 0:
 arcpy.AddMessage("\t\tStorm not transposable to basin. Removing " + storm + "
from list...\n")
 stormList.remove(storm)
 else:
 arcpy.AddMessage("\t\tTransposed to " + str(transCounter) + "/" + str(i) + " grid
points...\n")
 del row, transCounter
 del storm, gridRows, dadPrecip

H - 18

 updatePMP(pmpList, driverList, dur) # calls function to update "PMP Points"
feature class
 del dur, pmpList, stormList

 arcpy.AddMessage("\n'PMP_Points' Feature Class 'PMP_XX' fields update complete for all '" +
stormType + "' storms.")

 outputPMP(stormType, aoiSQMI, outputPath) # calls outputPMP() function

 if runTemporal:
 # centroidLocation = basinZone(basin)
 # arcpy.AddMessage("\nBasin Centroid Transposition Zone: " + str(centroidLocation[0]) +
"\nBasin Centroid side of Continental Divide: " + str(centroidLocation[1]))
 outArea = str(int(round(aoiSQMI,0))) + "sqmi"
 outGDB = outLocation + "\\" + stormType + "\\PMP_" + desc.baseName + "_" + outArea +
".gdb"
 if stormType == "Local":
 temporalDistLS(stormType, outGDB, outArea)
 if stormType == "General":
 temporalDistGS(stormType, outGDB, outArea)
 if stormType == "Tropical":
 temporalDistTS(stormType, outGDB, outArea)
 del outGDB

 del aoiSQMI, stormType
 return
##~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##    
 
def outputBasAveTable(): 
    arcpy.AddMessage("\nCreating basin average summary table.\n") 
    tableList = basAveTables 
    for table in tableList: 
        arcpy.AddMessage("\t\tMerging tables... " + table) 
 
    dm.Merge(basAveTables, outputTable) 
    ##  addLayerMXD(outputTable)  adds output table to ArcMap session 
 
    return 
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~## 

def addLayerMXD(addFC):
 desc = arcpy.Describe(addFC)
 layerName = desc.name
 arcpy.AddMessage("\nAdding " + layerName + " table to current MXD...")
 if desc.dataType == "FeatureClass":
 dm.MakeFeatureLayer(addFC, layerName)
 layer = arcpy.mapping.Layer(layerName)
 arcpy.mapping.AddLayer(df, layer)
 arcpy.AddMessage("\n" + layerName + " added to current map session.\n")
 elif desc.dataType == "Table":
 layer = arcpy.mapping.TableView(desc.catalogPath)
 arcpy.mapping.AddTableView(df, layer)
 arcpy.AddMessage("\n" + layerName + " added to current map session.\n")
 elif desc.dataType == "ArcInfoTable":
 layer = arcpy.mapping.TableView(desc.catalogPath + ".dbf")
 arcpy.mapping.AddTableView(df, layer)
 arcpy.AddMessage("\n" + layerName + " added to current map session.\n")

 del desc, layerName, layer
 return

##~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~## 
 
if locDurations: 
    type = "Local" 
    durations = locDurations 
    dm.CreateFolder(outLocation, type) 
    outputPath = outLocation + "\\Local\\"   



 

H - 19 
 

    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 
    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate 
the local storm PMP 
    #summaryReport() 
    arcpy.AddMessage("\nLocal storm analysis 
complete...\n************************************************************************************
*********************") 
 
if genDurations: 
    type = "General" 
    durations = genDurations 
    dm.CreateFolder(outLocation, type) 
    outputPath = outLocation + "\\General\\"   
    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 
    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate 
the general storm PMP 
    arcpy.AddMessage("\nGeneral Winter storm analysis 
complete...\n************************************************************************************
*********************") 
 
if tropDurations: 
    type = "Tropical" 
    durations = tropDurations 
    dm.CreateFolder(outLocation, type) 
    outputPath = outLocation + "\\Tropical\\"   
    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 
    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate 
the tropical storm PMP 
    arcpy.AddMessage("\nTropical storm analysis 
complete...\n************************************************************************************
*********************") 
 

 
 
 
 
 

 



 

I - 1 

Appendix I 
PMP Version Log: Changes to Storm Database and 

Adjustment Factors 
  



 

I - 2 
 

PMP Version 1.1: 
The purpose of this version was to apply an preliminary set of changes to the initial transposition 
conditions. 
 
General Storms: 

• SPAS 1208_1 – Warner Park, TN 2010 - Added zones 8, 11, and 12 for locations below 
3,000’ for continuity over OK 

• SPAS 1242_1 – Alley Spring, MO 2008 - Added zones 8, 11, and 12 for locations below 
3,000’ for 

• SPAS 1286_1 – Aurora College, IL 1996 – Updated DAD table with log-linear DAD values 
• SPAS 1305_1 - Elba, AL 1929 – Limit to +/- 5° Latitude (36.363°N) 
• SPAS 1583_1 – Council Grove, KS 1951 – Limit to west of 91°W 
• SPAS 1587_1 – Prairieview, NM 1941 – Removed elevation constraint 
• SPAS_1591_1 - Hearne, TX 1899 – Constrained to south of 35.84°N, within 5° latitude of 

storm center 

Hybrid Storms: 
The GTF was revised for the hybrid events to use only a single duration (6hr or 24hr) to 
represent both storm types so that the geographic adjustment would be consistent regardless of 
PMP type. 
 

• SPAS 1293_3 – Elbert, CO 1965 – Used 6-hour 100-year precipitation estimates for both LS 
and GS 

• SPAS 1294_1 – Penrose, CO 1921 – Used 6-hour 100-year precipitation estimates for both 
LS and GS 

• SPAS 1294_2 – Adelaide, CO 1921 – Used 6-hour 100-year precipitation estimates for both 
LS and GS 

• SPAS 1560_1 – Conway, TX 1951 – Used 24-hour 100-year precipitation estimates for both 
LS and GS 

• SPAS 1568_1 – Carlsbad, NM 1966 – Used 24-hour 100-year precipitation estimates for both 
LS and GS 

• SPAS 1592_1 – Thrall, TX 1921 – Used 24-hour 100-year precipitation estimates for both LS 
and TS; Constrained to south of 35.629°N, within 5° latitude of storm center. Capped GTF at 
1.20.  Limit elevation to +/- 1,000’ of storm center 

• SPAS 1602_1 – Vic Pierce, TX 1954 – Used 24-hour 100-year precipitation estimates for 
both LS and TS; Restricted south of 36°N and west of 96°W 

Local Storms: 
• SPAS 1434_1 – Holt, MO 1947 – Extended the southern limit from 34°N to 33°N to provide 

a smoother transition 
• SPAS 1494_1 – Mountain Home, TX 1932 – Added zones 11 and 12 to match SPAS 1602 

limits; Restricted to south of 36°N and 96°W 
• SPAS 1495_1 – Cheyenne, OK 1934 – Applied a +/- 1,000’ elevation constraint 



 

I - 3 
 

Tropical Storms: 
Applied a GTF cap of 1.10 to all tropical events for consistency with the Texas PMP study in 
addition to the following changes 
 

• SPAS 1631_1 – Watson, LA 2016 – Added this event 
• SPAS 1631_2 – Lafayette, LA 2016 – Added this event 
• SPAS 1667_1 - Hurricane Harvey, 2017 – Revised DAD table and storm adjustment factors 

with final SPAS output 
• For the following coastal tropical events, a limit of zone 5 and 9 with a buffer of ~3° latitude 

inland form coast was applied: 
§ SPAS 1463 
§ SPAS 1569 
§ SPAS 1593 
§ SPAS 1596 
§ SPAS 1601 (zone 1 and 2) 
§ SPAS 1667 

PMP Version 1.2: 
 
General Storms: 

• SPAS 1208_1 – Warner Park, TN 2010 – Added zone 5 and extent to an elevation of 3,300’ 
to provide a smoother field over LA 

• SPAS 1218_1 – Douglasville, GA 2009 – Added zone 5 to provide a smoother field over LA 
• SPAS 1591_1 – Hearne, TX 1899 – Extended north to 36°N 

PMP Version 1.2a: 
The purpose of this version was to evaluate restricting the transposition limits of the storms 
occurring over the Edwards Plateau region of Texas to only transposition zone 8. 
 
The following tropical storm was constrained to zone 8: 

• SPAS 1582 Zone 1 – Broome, TX 1936 (A version was run with and without holding this 
storm to zone 8) 

The following tropical/local hybrid storm was constrained to zone 8: 
• SPAS 1602 Zone 1 – Vic Pierce, TX 1954 

The following local storms were constrained to zone 8: 
• SPAS 1494 – Mountain Home, TX 1932 
• SPAS 1496 – Woodward Ranch, TX 1935 

In addition, to rectify some of the discontinuous tropical storm PMP over eastern Texas at larger 
area-sizes, the following changes were made. 

• SPAS 1317 – Americus, GA 1994 – This storm was allowed to go into all of zone 8 and zone 
12 



 

I - 4 
 

• SPAS 1601 DAD zone 2 – Dinero, MX, 1967 – This storm was removed.  This storm was re-
entered into the database in version 1.2c, 1.3, as removing it had no major impact after 
changing the limits of SPAS 1317. 

PMP Version 1.2b: 
A sensitivity was done where SPAS 1602 Vic Pierce, 1954 was removed as a tropical storm 
altogether.  This version is the same as 1.2a, without Vic Pierce. 
 
PMP Version 1.2c: 
For this sensitivity, SPAS 1591 – Hearne, TX 1899 was reclassified from a general storm to a 
tropical storm.  When removing Hearne from the general storm list, a discontinuity was evident 
between zone 5 and zone 9.  To rectify this, SPAS 1431 – Warner, OK 1943 was allowed to go 
into all of zone 5. 
 
PMP Version 1.3: 
For this full version, each of the changes made for the v1.2a-1.2c sensitivities were adopted.  In 
addition, numerous other changes were made to version 1.2 as planned.  This included removing 
elevation constraints over zone 9, adjusting transposition limits, correcting the SPAS 1667 storm 
rep. dew point, and adding the May 1995 general storm.  A full log of the changes are included 
in the Version 1.3 storm list table and are summarized below: 
 
General Storms: 

• SPAS 1183_1 – Egerton, MO 1965 – Removed the elevation constraint over zone 9 
• SPAS 1206_1 – Big Rapids, MI 1986 – Removed elevation constraint east of 96°W.  

Restricted zone 9 to the areas above 1.4 GTF or north of 36°N 
• SPAS 1208_1 – Warner Park, TN, 2010 – Included all of zone 1 and 11. 
• SPAS 1218_1 - Douglasville, GA, 2009 - Removed the elevation constraint 
• SPAS 1219_1 - Big Fork, AR 1982 - Removed the elevation constraint 
• SPAS 1286_1 – Aurora College, IL 1996 - Removed elevation constraint east of 96°W.  

Restricted zone 9 to the areas above 1.1 GTF or north of 36°N 
• SPAS 1431_1 – Warner, OK 1943 Included zone 5 and 11 
• SPAS 1433_1 – Collinsville, IL 1946 - Removed elevation constraint 
• SPAS 1591_1 – Hearne, TX 1899 – Removed, reclassified as a tropical storm 
• SPAS 1719_1 – Necaise, LA 1995 – Added storm 

Local Storms: 
• SPAS 1295_3 – Hale, CO 1935 – Added all of zone 11 
• SPAS 1494_1 – Mountain Home, TX 1932 – Held to zone 8 
• SPAS 1495_1 – Cheyenne, OK 1934 – Assigned a manually delineated transposition limit 

over zone 9, based on topographic relief 
• SPAS 1496_1 – Woodward Ranch, TX 1935 – Held to zone 8 
• SPAS 1602_1 – Vic Pierce, TX 1954 - Held to zone 8.  Recalculated GTF using 6-hour 100 

year precipitation 

 



 

I - 5 
 

Local/Tropical Hybrid Storms: 
• SPAS 1592_1 – Thrall TX, 1921 – Removed elevation constraint over zone 9 

Tropical Storms: 
• SPAS 1317_1 – Americus, GA 1994 – Added all of zones 8, 9, 11, and 12 
• SPAS 1582_1 – Broome, TX 1936 – Held to zone 8 
• SPAS 1591_1 – Hearne, TX 1899 – Added as a tropical Storm.  Removed elevation 

constraint over zone 9 
• SPAS 1602_1 – Vic Pierce, TX 1954 – Removed, reclassified as a local storm 
• SPAS 1667_1 – Hurricane Harvey, 2017 – Corrected storm rep. dew point to 86.0° (IPMF – 

1.04) 

PMP Version 1.4 
 
All Storms: 

• Updated target 100-year precipitation value over all Texas grid points with the NOAA Atlas 
14 vol.11 values and recalculated GTF based on these values.  

• Recalculated IPMF using the climatological maximum 100-year dew point from the Feb. 
2019 revised AWA grids.  While some storms resulted in no change, the IPMF for many 
storms changed due to this revision.  All storms that had changes to the IPMF were identified 
in the storm list. 

General Storms: 
• SPAS 1206_1 – Big Rapids, MI 1986 – Removed storm due to refined transposition limits 

outside of project domain 
• SPAS 1286_1 - Aurora College, IL 1996 – Extended the transpositionability within zone 9 to 

everywhere with a GTF < 1.12 (from 1.10) 

Local/General Hybrid Storms: 
• SPAS 1560_1 – Conway, TX 1951– Corrected transposition limits – added zone 11.  Revised 

GTF using NA14 100y precipitation at storm center location. 

Local Storms: 
• SPAS 1185_1 – Corrigan, TX 1994 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1226_1 – College Hill, OH 1963 - Extended south to 35.5°N and west to 94.5°W 
• SPAS 1485_1 – Las Cruces, NM 1935 – Added storm 
• SPAS 1494_1 – Mountain Home, TX 1932 - Revised GTF using NA14 100y precipitation at 

storm center location 
• SPAS 1496_1 – Woodward Ranch, TX 1935 - Revised GTF using NA14 100y precipitation 

at storm center location 
• SPAS 1590_1 – Dawson, TX 2015 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1602_1 – Vic Pierce, TX 1954 - Revised GTF using NA14 100y precipitation at storm 

center location 



 

I - 6 
 

Local/Tropical Hybrid Storms: 
• SPAS 1592_1 – Thrall TX, 1921 – Revised GTF using NA14 100y precipitation at storm 

center location 

Tropical Storms: 
• SPAS 1179_1 – Albany, TX 1978 – Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1184_1 – Clyde, TX 1981 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1463_1 –Alvin, 1979 - Revised GTF using NA14 100y precipitation at storm center 

location 
• SPAS 1464_1 – Houston, TX 2001 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1582_1 – Broome, TX 1936 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1591_1 – Hearne, TX 1899 - Revised GTF using NA14 100y precipitation at storm 

center location; Added the 1.10 tropical storm GTF cap. 
• SPAS 1601_2 – Dinero, MX 1967 - Revised GTF using NA14 100y precipitation at storm 

center location 
• SPAS 1667_1 – Harvey, 2017 - Revised GTF using NA14 100y precipitation at storm center 

location 

PMP Version 1.4a 
Sensitivity version to refine transposition limits of several key events 
 
Local Storms: 

• SPAS 1226_1 – College Hill, OH 1963 – Applied a GTF cap of 1.20 in effort to better match 
surrounding depths 

• SPAS 1295_3 – Hale, CO May 1935 – Applied a GTF cap of 1.00 in effort to better match 
surround depths over zone 11 

• SPAS 1434_1 – Holt, MO 1947 – Extended the southern limit from 33°N to 32°N to provide 
a smoother transition 

• SPAS 1495_1 – Cheyenne, OK 1934 – Applied a GTF cap of 1.00 in effort to better match 
surround depths over zone 9 

Local/Tropical Hybrid Storms: 
• SPAS 1592_1 – Thrall TX, 1921 – Applied NWS transposition limits (south of 34°N) 

PMP Version 1.4b 
The following changes were applied to v1.4: 
 
Local Storms: 

• SPAS 1226_1 – College Hill, OH 1963 – Applied a GTF cap of 1.2 in effort to better match 
surrounding depths 



 

I - 7 
 

• SPAS 1295_3 – Hale, CO May 1935 – Applied a GTF cap of 1.0 in effort to better match 
surround depths over zone 11; Added zone 12 

• SPAS 1427_1 – Boyden, IA 1926 – Applied a GTF cap of 1.2 in effort to better match 
surrounding depths 

• SPAS 1434_1 – Holt, MO 1947 – Include all of zone 9 and add zone 5 with a GTF cap of 1.2 
to provide continuity over LA 

• SPAS 1495_1 – Cheyenne, OK 1934 – Applied a GTF cap of 1.00 in effort to better match 
surround depths over zone 9 

PMP Version 1.5 
The following changes were applied to v1.4b: 
 
Local Storms: 

• SPAS 1495_1 – Cheyenne, OK 1934 – Applied a GTF cap of 1.00 in effort to better match 
surround depths over zone 9.  Removed elevation constraint to allow transposition into all of 
zones 11 and 12 to provide spatial continuity over western OK. 

Tropical Storms: 
• SPAS 1179_1 – Albany, TX 1978 – Added zone 5 to provide continuity to the coast for 

short-duration small area-sizes 

 



 

J - 1 

Appendix J 
Project Review Board Memos 

 
 



 

J - 2 

                                       
    PO Box 175 

Monument, CO 80132            
      (719) 488-4311 

http://www.appliedweatherassociates.com 
 

April 11, 2019 
 

Memo for Record 
 
To:  Oklahoma-Arkansas-Louisiana-Mississippi Review Board  
 
Subject:  Removal of Big Rapids, MI September 1986 storm, SPAS 1242 
 
Introduction 
This memo provides background and reasoning for AWA’s recommendation of removing the 
Big Rapids, MI September 1986 (SPAS 1242) storm event from the final short storm list and 
PMP development. 
  
Background  
Applied Weather Associates has completed several sensitivities related to the use and removal of 
the Big Rapids, MI September 1986 (SPAS 1242) storm.  These were based on discussions 
regarding this storm and its effects on PMP during review board meeting 2 and 3.  During those 
discussions it was shown that the storm may not be transpositionable to any portion of this study.  
This was demonstrated by the excessive total adjustment factors (TAF) resulting from a high in-
place maximization factor (IPMF) and excessively large Geographic Transposition Factor 
(GTF).  The combinations of these two factors often resulted in TAF adjustments greater than 
2.00.  In other words, the storm that is controlling of PMP was being increased by 48% in place, 
then approximately 50% more by moving it from Michigan to Oklahoma and Arkansas.  This 
resulted in likely inappropriate adjustments being applied to the storm. 
 
Sensitivities were performed to develop a reasonable way to investigate this storm and determine 
whether it should be kept in the study or not.  Sensitivities applied included capping the GTF 
factor at 1.40 and 1.20, using the GTF contours for transposition limits, and removal of the 
storm.  Results of these sensitivities demonstrated that the storm should not be used in this study.  
The following support this recommendation: 
 

• Use in Oklahoma and Arkansas would be beyond NWS transposition limits applied to 
similar storms in similar regions 

• The synoptic meteorological storm environment was different than would occur over 
southern Great Plains in September 

• Many other general storms in and nearby the region provide similar depths and greater 
certainty 

• Adjustment factors significantly increasing the storm, more than doubling what was 
observed because of high IPMF and high GTF 



 

J - 3 
 

• Large TAF result in the storm likely changing the storm significantly from what was 
observed and therefore violating the tenant of PMP that the storm dynamics are constant 
and unchanged after adjustments 

• Resulting values still greater than HMR 51 at some area sizes/durations even after 
removal 

 
Figure 1 displays a map of the General storm PMP for 5,000-square miles and 48-hour duration 
from the most recent version of PMP with the Big Rapids, MI September 1986 (SPAS 1242) 
storm included, while Figure 2 displays a map of the General storm PMP for 5,000-square miles 
and 48-hour duration with the Big Rapids, MI September 1986 (SPAS 1242) storm removed.  
This clearly shows that the spatial patterns are slightly improved and provide a more accurate fit 
without the storm included.   
 
Figure 3 displays a map of the PMP compared to HMR 51 PMP for 10,000-square miles and 48-
hour duration from the most recent version of PMP with the Big Rapids, MI September 1986 
(SPAS 1242) storm included, while Figure 4 displays a map of the PMP compared to HMR 51 
PMP for 10,000-square miles and 48-hour duration with the Big Rapids, MI September 1986 
(SPAS 1242) storm removed.  The region where the Big Rapids, MI September 1986 (SPAS 
1242) storm controls (southern Kansas, northern Oklahoma, northern Arkansas) are significantly 
greater than HMR 51, by more than 30% in some cases.  After removal of the storm, the 
difference from HMR 51 is reduced, but the values are still greater.   
 

 
Figure 1:  General storm 5000-square mile, 48-hour PMP with Big Rapids, MI included 



 

J - 4 
 

 

 
Figure 2:  General storm 5000-square mile, 48-hour PMP without Big Rapids, MI 
 



 

J - 5 
 

 
Figure 3:  Comparison of PMP depths against HMR 51 with Big Rapids, MI  
 



 

J - 6 
 

 
Figure 4:  Comparison of PMP depths against HMR 51 without Big Rapids, MI 



 

K - 1 

Appendix K 
Project Review Board Letter 

 
 
  



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 2 
 

 
 

Letter of Endorsement for 
 

Regional Probable Maximum Precipitation Study for Oklahoma-
Arkansas-Louisiana-Mississippi 

 
By Applied Weather Associates LLC 

 

 
 

Prepared for 
Arkansas Dept. of Natural Resources 

Louisiana Dept. of Transportation & Development 
Mississippi Dept. of Environmental Quality 

Oklahoma Water Resources Board 
 
 
 
 

August 2019  



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 3 
 

Background 
 

In September of 2017, a proposal selection meeting was convened by the Arkansas Department 
of Natural Resources in Little Rock, Arkansas to reach a consensus on a vendor to perform a 
Probable Maximum Precipitation (PMP) Study for Arkansas, Mississippi, and Louisiana.  The 
intent of this study was to produce updated PMP estimates for the three-state region that would 
supersede estimates from Hydrometeorological Report No. 51 (HMR 51).  Applied Weather 
Associates (AWA) LLC was selected at that meeting to conduct the study.  Subsequent to this 
selection, Oklahoma was added to the regional study at the request of the Oklahoma Water 
Resources Board and AWA was tasked with the following: 

 
• Perform a climatological and meteorological analysis of significant storms that influence 

PMP values across the four-state region.  This is to include analysis of local storms, 
general storms, and tropical storms.  In addition to the major storms included in the HMR 
51 analysis, consider all additional major storm events that have occurred in subsequent 
years. 

• Utilize updated tools and methods for estimating extreme precipitation depth, area, and 
duration relationships for the four-state region. 

• Provide a final report to include PMP maps in GIS format for the four-state region for 
area sizes from 1 square mile to 20,000 square miles and for durations from 1-hour to 
72-hours.  Note, however, that the GIS-based program can extend out to durations of 96-
hours and 120 hours, and for area sizes to 100,000 square miles. Also, a GIS-based 
program will be provided to allow users to extract the exact PMP values for any location 
in the four-state region. 

• Coordinate an independent review team for the study to include expertise in PMP and 
dam safety across the region. 

 
The Arkansas Department of Natural Resources engaged the services of several committee 
members to form an Independent Review Team (IRT).  Members of this team include Whitney 
Montague - Arkansas State Climatologist; Barry Keim - Louisiana State Climatologist/Professor 
at LSU; Mike Brown – Mississippi State Climatologist/Professor at Mississippi State 
University; Edward Knight – Louisiana Dam Safety Program Manager, Louisiana Department of 
Transportation and Development; Zachary Hollandsworth – Oklahoma Water Resources Board; 
Yohanes Sugeng - Oklahoma Water Resources Board; Dusty Myers – Chief, Mississippi Dam Safety 
Division; Andrew Cummings – Mississippi Dam Safety Division, Mississippi Department of 
Environmental Quality; and Stephen Smedley – Arkansas Dam Safety Engineer, Arkansas Natural 
Resources Commission. In addition, representatives of the Federal Energy Regulatory 
Commission and the Natural Resources Conservation Service attended meetings and provided 
input to the study. 

 
 
Four formal meetings and several conference calls were held to hear progress updates by AWA 
and to participate in discussions regarding process and methods for the study. The four meeting 
dates and locations were as follows: 

 

 
•  February 7-8, 2018 – Jackson, Mississippi 
•  July 17-19, 2018 – Baton Rouge, Louisiana 



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 4 
 

•  January 22-23, 2019 – Baton Rouge, Louisiana 
•  June 4-5, 2019 – Little Rock, Arkansas 

 
 
Conclusions Regarding Study Analyses 

 
 

At these meetings and on several conference calls, the IRT was charged with reviewing and 
assessing each phase of AWA’s four-state PMP study and for providing oversight, as necessary, 
to confirm the study methods were consistent with accepted PMP theories and procedures. The 
study used the same principles as the National Weather Service’s HMR reports and World 
Meteorological Organization’s PMP Manual for in-place maximizations, transposition, etc. 
However, in several instances, AWA utilized newer techniques and updated datasets.  However, 
the methods reflect the most current practices used for defining PMP, including comprehensive 
storm analysis procedures.  These new and improved procedures include use of the following: 
 

• Storm Precipitation Analysis System (SPAS) software 
• HYSPLIT model to assist in determining upwind back trajectories to determine 
appropriate source regions of storm moisture 
• NOAA Atlas 14 for purposes of transposing storms from their source region to the study 
area (called the Geographic Transposition Factor), which accounts for elevation differences as 
well as differences in moisture availability  
• Geographical Information Systems (GIS) for mapping,  
• Updated maximum dew point and sea surface temperature climatologies for storm 
maximization  
• Contemporary understanding of storm formation and storm climatology across the four-
state region, which aided in determining transposition limits.  

 
The IRT notes that the application of these contemporary procedures has been accepted in other 
AWA studies throughout the United States. Although this study produced deterministic values, the 
IRT realizes that there is some subjectivity associated with PMP development procedures, such as 
selection of storms used for PMP, determination of storm adjustment factors, and storm 
transposition limits. The IRT provided guidance on appropriate storm transposition limits, while 
considering both the meteorological and geographic limitations associated with each respective 
storm.   
 
Use of the Moisture Transposition Factor (MTF) has been controversial in past PMP studies due 
to potential double counting of moisture in conjunction with the geographic transposition factor 
(GTF). The current study set the MTF = 1.0, which nullifies its use in this study. The IRT 
concurred with this decision. 
 
This study provides PMP estimates for local storms (intense, short duration), general storms 
(extra-tropical cyclones), and tropical storms (including hurricanes).  An example of the 1-hour/1 
square mile local storm PMP map for the region is shown in Figure 1, while Figure 2 depicts the 
72-hour/10 square mile tropical storm PMP for the region. 
 
 
 



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 5 
 

 
Figure 1.  1-hour/1 square mile local storm PMP map for Oklahoma, Arkansas, Louisiana, and 
Mississippi. 
 

 
Figure 2.  72-hour/10 square mile tropical storm PMP map for Oklahoma, Arkansas, Louisiana, 
and Mississippi. 
 



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 6 
 

The IRT believes the PMP estimates of this study provide much improved results over those 
presently being utilized from HMR 51.  The results include a longer period of record than that 
implemented in HMR 51, and the results have greater geographic resolution, thereby taking into 
account elevation differences across the region.  As such, the IRT accepts AWA’s estimates for 
PMP for use across the states of Oklahoma, Arkansas, Louisiana, and Mississippi. We also note 
that as future storms occur, the PMP will be updated by AWA. 
 

 

The IRT performed the duties described above, but it should be noted that we acted in an advisory 
capacity only. Specifically, no calculations were performed by the IRT, nor were detailed reviews 
of calculations performed by the IRT. The IRT’s expectation was that AWA utilized adequate 
quality assurance and control procedures to provide confidence that the calculations were 
performed accurately and without error. As such, results and conclusions in this report are based 
upon results from Applied Weather Associates, LLC.  We, the oversight committee, used our best 
professional judgment in evaluating their work.  We note that the final PMP estimates are based 
on storms from the historical record of the past century and more, with the underlying assumption 
that this record across the eastern United States yields insight into the PMP for the four-state 
region, including Oklahoma, Arkansas, Louisiana, and Mississippi.  As such, we do not make any 
warranty, express or implied, regarding use of any information or method shown in the Regional 
Probable Maximum Precipitation Study for Oklahoma-Arkansas-Louisiana-Mississippi report, or 
assume any future liability regarding use of any information or method contained therein. 

 

 
Respectfully submitted, 

 
 
 
 
 
Barry Keim 
 
 
 

 
Edward Knight 
 

 
Zachary Hollandsworth 
 
 
 



Independent Review Team 
PMP Study for OK-AR-LA-MS 
 

K - 7 
 

 
Yohanes Sugeng 
 
 

 
Stephen C. Smedley, P.E. 
 
 

 
Johnathon Atkins 
 
 
 
 
 


